精英家教网 > 初中数学 > 题目详情

【题目】如图,一条公路的转弯处是一段圆弧().

(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)

(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.

【答案】(1)作图见试题解析;(2)50m.

【解析】

试题分析:(1)连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;

(2)连接OA,OC,OC交AB于D,如图2,由C为的中点得到OCAB,AD=BD=AB=40,则CD=20,设O的半径为r,在Rt△OAD中利用勾股定理得到r的值

试题解析:(1)如图1,点O为所求;

(2)连接OA,OC,OC交AB于D,如图2,C为的中点,OCAB,AD=BD=AB=40,设O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,,解得r=50,即所在圆的半径是50m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线与坐标轴交于A、B、C三点,其中B(4,0)、C(﹣2,0),连接AB、AC,在第一象限内的抛物线上有一动点D,过D作DE⊥x轴,垂足为E,交AB于点F.

(1)求此抛物线的解析式;

(2)在DE上作点G,使G点与D点关于F点对称,以G为圆心,GD为半径作圆,当⊙G与其中一条坐标轴相切时,求G点的横坐标;

(3)过D点作直线DH∥AC交AB于H,当△DHF的面积最大时,在抛物线和直线AB上分别取M、N两点,并使D、H、M、N四点组成平行四边形,请你直接写出符合要求的M、N两点的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列事件是必然事件的为(
A.购买一张彩票,中奖
B.通常加热到100℃时,水沸腾
C.任意画一个三角形,其内角和是360°
D.射击运动员射击一次,命中靶心

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,真命题是(

A. 两条对角线互相平分的四边形是平行四边形

B. 两条对角线互相垂直的四边形是菱形

C. 两条对角线互相垂直且相等的四边形是正方形

D. 两条对角线相等的四边形是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下午四点半钟的时候,时针和分针所夹的角度是( )

A. 30 B. 45 C. 60 D. 75

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=a,AD=b,点M为BC边上一动点(点M与点B、C不重合),连接AM,过点M作MN⊥AM,垂足为M,MN交CD或CD的延长线于点N.

(1)求证:△CMN∽△BAM;

(2)设BM=x,CN=y,求y关于x的函数解析式.当x取何值时,y有最大值,并求出y的最大值;

(3)当点M在BC上运动时,求使得下列两个条件都成立的b的取值范围:①点N始终在线段CD上,②点M在某一位置时,点N恰好与点D重合.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为(
A.6.5
B.6
C.5.5
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.
(1)求高铁列车的平均时速;
(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:﹣(﹣1)=(  )

A.±1B.2C.1D.1

查看答案和解析>>

同步练习册答案