精英家教网 > 初中数学 > 题目详情
15.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,过点D作∠CDE=∠DFE,DE交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.
(1)求证:GE是⊙O的切线;
(2)若tanC=$\frac{1}{3}$,BE=4,求AG的长.

分析 (1)连接OD,如图,先证明∠3=∠1,再证明∠C=∠4,然后利用∠3+∠C=90°得到∠1+∠4=90°,则OD⊥DE,然后根据切线的判定定理即可得到结论;
(2)设OF=x,则OB=3x,则可表示出BF=2x,再利用∠1=∠2得到ED=EF=2x+4,然后在Rt△ODE中,根据勾股定理得到(3x)2+(2x+4)2=(4+3x)2,再解方程求出x即可得到结论.

解答 (1)证明:连接OD,如图,
∵∠1=∠2,
而∠2=∠3,
∴∠3=∠1,
∵OC⊥AB,
∴∠3+∠C=90°,
∴∠1+∠C=90°,
而OC=OD,
∴∠C=∠4,
∴∠1+∠4=90°,即∠ODE=90°,
∴OD⊥DE,
∴GE是⊙O的切线;

(2)解:设OF=x,则OC=3x,
∴BF=2x,
∵∠1=∠2,
∴ED=EF=2x+4,
在Rt△ODE中,
∵OD2+DE2=OE2
∴(3x)2+(2x+4)2=(4+3x)2,解得x=2,
∴OD=6,DE=8,OE=10
又∵△AGE∽△DOE,
AE=16,
可得AG=12.

点评 本题考查了切线的判断与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.常见的辅助线有:判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”; 有切线时,常常“遇到切点连圆心得半径”.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.解方程:$\frac{a-b}{a+2b}$÷$\frac{{{a^2}-{b^2}}}{{{a^2}+4ab+4{b^2}}}$-1,其中a=3+$\sqrt{5}$,b=3-$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图2,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,展开小桌板使桌面保持水平时如图1,小桌板的边沿O点与收起时桌面顶端A点的距离OA=75厘米,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与支架长BC的长度之和等于OA的长度.
(1)求∠CBO的度数;
(2)求小桌板桌面的宽度OB.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.类比特殊四边形的学习,我们可以定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
【探索体验】
(1)如图1,已知在四边形ABCD中,∠A=40°,∠B=100°,∠C=120°.求证:四边形ABCD是“等对角四边形”.
(2)如图2,若AB=AD=a,CB=CD=b,且a≠b,那么四边形ABCD是“等对角四边形”吗?试说明理由.
【尝试应用】
(3)如图3,在边长为6的正方形木板ABEF上裁出“等对角四边形”ABCD,若已经确定DA=4m,∠DAB=60°,是否在正方形ABEF内(包括边上)存在一点C,使四边形ABCD以∠DAB=∠BCD为等对角的四边形的面积最大?若存在,试求出四边形ABCD的最大面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax-2b与反比例函数y=$\frac{c}{x}$在同一平面直角坐标系中的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.不透明袋子中有2个白球、3个黑球,这些球除颜色外无其他差别,小李从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是白球的概率是$\frac{4}{25}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是(  )
A.40πB.48πC.60πD.80π

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是(  )
A.b<1且b≠0B.b>1C.0<b<1D.b<1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,在△ABC中,∠C=90°,AC=9cm,动点P从点A以1cm/s的速度沿AB向点B运动,运动到点B终止,同时动点Q从点B沿BA向点A匀速运动,运动到点A终止.设运动时间为x(s),P、Q之间的距离为y(cm),且y与x的函数图象如图2所示.
(1)动点Q的运动速度为2s.
(2)点N所表示的实际意义是点P、Q运动5s时相遇.
(3)若△PQC的面积为18cm2,求运动的时间x.

查看答案和解析>>

同步练习册答案