精英家教网 > 初中数学 > 题目详情

在下列性质中,平行四边形不一定具有的是

[  ]

A.对角相等
B.内角和
C.对角互补
D.邻角互补
答案:C
解析:

平行四边形不一定具有的性质是对角互补,只有当两个对角是直角时该性质才成立。

选C。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在八年级上册我们已经知道三角形的中位线具有如下性质:
三角形的中位线平行于第三边,并且等于它的一半.
如图所示,已知△ABC和下列四种说法:
①D是AB中点;②E是AC中点;③DE=
12
BC;④DE∥BC.
请你以其中的两种说法为条件(①和②不能同时作为条件),其余两种说法为结论,构造一个命题;并判定你所构造的命题是否正确.如果正确请说明理由;如果不正确,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

在探究矩形的性质时,小明得到了一个有趣的结论:矩形两条对角线的平方和等于四条边的平方和.如图1,在矩形ABCD中,由勾股定理,得AC2=AB2+BC2,BD2=AB2+AD2,又CD=AB,AD=BC,所以AC2+BD2=AB2+BC2+CD2+AD2=2(AB2+BC2).
小亮对菱形进行了探究,也得到了同样的结论,于是小亮猜想:任意平行四边形两条对角线的平方和等于四条边的平方和.请你解决下列问题:
(1)如图2,已知:四边形ABCD是菱形,求证:AC2+BD2=2(AB2+BC2);
(2)你认为小亮的猜想是否成立,如果成立,请利用图3给出证明;如果不成立,请举反例说明;
(3)如图4,在△ABC中,BC、AC、AB的长分别为a、b、c,AD是BC边上的中线.试求AD的长.(结果用a,b,c表示)
精英家教网

查看答案和解析>>

科目:初中数学 来源:伴你学数学  八年级 上册 题型:044

在下列性质中,平行四边形具有的是________,矩形具有的是________,菱形具有的是________,正方形具有的是________.

(1)四条边都相等

(2)对角线互相平分

(3)对角线相等

(4)对角线互相垂直

(5)四个角都是直角

(6)每一条对角线平分一组对角

(7)对边相等且平行

(8)有两条对称轴

(将相应性质的序号填在相应的横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在探究矩形的性质时,小明得到了一个有趣的结论:矩形两条对角线的平方和等于四条边的平方和.如图1,在矩形ABCD中,由勾股定理,得AC2=AB2+BC2,BD2=AB2+AD2,又CD=AB,AD=BC,所以AC2+BD2=AB2+BC2+CD2+AD2=2(AB2+BC2).
小亮对菱形进行了探究,也得到了同样的结论,于是小亮猜想:任意平行四边形两条对角线的平方和等于四条边的平方和.请你解决下列问题:
(1)如图2,已知:四边形ABCD是菱形,求证:AC2+BD2=2(AB2+BC2);
(2)你认为小亮的猜想是否成立,如果成立,请利用图3给出证明;如果不成立,请举反例说明;
(3)如图4,在△ABC中,BC、AC、AB的长分别为a、b、c,AD是BC边上的中线.试求AD的长.(结果用a,b,c表示)

查看答案和解析>>

科目:初中数学 来源:2011年安徽省马鞍山市成功学校中考数学一模试卷(解析版) 题型:解答题

在探究矩形的性质时,小明得到了一个有趣的结论:矩形两条对角线的平方和等于四条边的平方和.如图1,在矩形ABCD中,由勾股定理,得AC2=AB2+BC2,BD2=AB2+AD2,又CD=AB,AD=BC,所以AC2+BD2=AB2+BC2+CD2+AD2=2(AB2+BC2).
小亮对菱形进行了探究,也得到了同样的结论,于是小亮猜想:任意平行四边形两条对角线的平方和等于四条边的平方和.请你解决下列问题:
(1)如图2,已知:四边形ABCD是菱形,求证:AC2+BD2=2(AB2+BC2);
(2)你认为小亮的猜想是否成立,如果成立,请利用图3给出证明;如果不成立,请举反例说明;
(3)如图4,在△ABC中,BC、AC、AB的长分别为a、b、c,AD是BC边上的中线.试求AD的长.(结果用a,b,c表示)

查看答案和解析>>

同步练习册答案