精英家教网 > 初中数学 > 题目详情

如图,△ABC是等腰直角三角形,∠BAC=90°,点D、E在BC上,且∠DAE=45°,现将△ACE绕点A旋转至△ABE′处,连接DE′和EE′,则下列结论中 

①AB⊥DE′②∠ADE=∠BAE ③△AEE′是等腰直角三角形   ④AD⊥EE′⑤BD2+CE2=DE2

正确的有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
D
分析:(1)由外角的性质和题意可推出∠ADE=∠ABC+∠BAD,∠BAE=∠DAE+∠BAD,再由等腰直角三角形的性质可知∠ABD=∠C=45°,即可推出∠ADE=∠BAE;(2)由旋转的性质可知AE=AE′,∠EAC=∠DAE′,再由∠EAC+∠BAE=90°,可知∠EAE′=90°,即可推出△AEE′是等腰直角三角形;(3)由∠DAE=45°,∠BAC=90°,可知∠EAC+∠BAD=45°,又因为∠EAC=∠BAE′,推出∠DAE′=∠EAD=45°,即得AD⊥EE′;(4)因为∠C=∠E′BA=∠ABD=45°,可求出△E′BD为直角三角形,再由EC=E′B,根据勾股定理,通过等量代换即可推出BD2+CE2=DE2
解答:(1)∵△ABC是等腰直角三角形,∠BAC=90°,
∴∠ABC=∠C=45°,
∵∠ADE=∠ABC+∠BAD,∠BAE=∠DAE+∠BAD,
∵∠DAE=45°,
∴∠ADE=∠BAE;
(2)∵△ACE绕点A旋转至△ABE′处,
∴AE=AE′,∠EAC=∠DAE′,
∵∠BAC=90°,
∴∠EAC+∠BAE=90°,
∴∠DAE′+∠BAE=90°,
∴△AEE′是等腰直角三角形;
(3)∵∠DAE=45°,∠BAC=90°,
∴∠EAC+∠BAD=45°,
∵∠EAC=∠BAE′,
∴∠DAE′=∠EAD=45°,
∵△AEE′是等腰直角三角形,
∴AD⊥EE′,
(4)∵∠C=∠E′BA=∠ABD=45°,
∴∠E′BD=90°,
∵EC=E′B,
∴BD2+CE2=DE2
∴②③④⑤项正确.
故选D.
点评:本题主要考查旋转的性质、勾股定理、等腰直角三角形等相关的性质定理,关键在于逐项分析解答,正确的运用相关的性质定理进行分析.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内一定点,延长BP至P′,将△ABP绕点A旋转后,与△ACP′重合,如果AP=
2
,那么PP′=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC是等腰三角形,AB=AC,D为直线BC上一点,DE⊥AC,DF⊥AB,CH⊥AB,
(1)如图(1)若D为BC的中点,求证:DE+DF=CH.
(2)如图(2)若D为BC延长线上一点,其他条件不变,线段DE.DF.CH 之间有何数量关系,请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是
 
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等腰直角三角形,D为斜边AB上任意一点(不与A,B重合),连接CD,作EC⊥DC,且EC=DC,连接AE.
(1)求证:∠E+∠ADC=180°.
(2)猜想:当点D在何位置时,四边形AECD是正方形?说明理由.

查看答案和解析>>

同步练习册答案