【题目】如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形.若显示屏AO与键盘BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,且PD⊥AO(此时点P为最佳视角),点C在OB的延长线上,PC⊥BC,BC=12cm.
(1)当PA=45cm时,求PC的长;
(2)当∠AOC=115°时,线段PC的长比(1)中线段PC的长是增大还是减小?请通过计算说明.(结果精确到0.1cm,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47).
【答案】(1)27 (2)增大
【解析】
(1)当PA=45cm时,连接PO,利用勾股定理求出PC;
(2)当∠AOC=115°时,过点D作DE⊥OC交BO的延长线于E,过点D作DF⊥PC,垂足为F,利用锐角三角函数分别求出FC、PF即可得到答案.
解:(1)当PA=45cm时,连接PO,
∵D为AO的中点,当PD⊥AO,
∴PO=45cm.
∵BO=24cm,BC=12cm,∠C=90°,
∴OC=OB+BC=36cm,PC==27cm;
(2)当∠AOC=115°时,过点D作DE⊥OC交BO的延长线于E,过点D作DF⊥PC,垂足为F,
∴四边形DECF是矩形,
在Rt△DOE中,
∵∠AOE=65°,DO=AO=12,
∴DE=DOsin65°=12×0.91=10.92,EO=DO cos65°=12×0.42=5.04,
∴FC=DE=10.92,DF=EC=EO+BO+BC=5.04+24+12=41.04,
在Rt△PDF中,
∵∠PDF=25°,
∴PF=DFtan25°=41.04×0.47=19.29,
∴PC=PF+FC=19.29+10.92=30.2>27.
故线段PC长是增大了.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=a(x2+2mx﹣3m2)(其中a,m是常数a<0,m>0)的图象与x轴分别交于A、B(点A位于点B的右侧),与y轴交于点C(0,3),点D在二次函数的图象上,CD∥AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.
(1)求a与m的关系式;
(2)求证:为定值;
(3)设该二次函数的图象的顶点为F.探索:在x轴的正半轴上是否存在点G,连结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y= (x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.
(1)填空:反比例函数的解析式为____________________,直线AC的解析式为____________________,B点的坐标是________.
(2)在平面内有点D,使得以A,B,C,D四点为项点的边形为平行四边形.
①在图中用直尺和2B铅笔画出所有符合条件的平行四边形;
②根据所画形,请直接写出符合条件的所有点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y=x(x≥0)的图象与反比例函数y=的图象交于点A,若点A绕点B(,0)顺时针旋转90°后,得到的点A'仍在y=的图象上,则点A的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线表达式C:, 已知点A(0,2),点P是抛物线上一点,若Rt△AOP有一个锐角正切值为,则点P的坐标_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.
(1)求该二次函数的解析式;
(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;
(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“以线段AB为一条对角线作一个菱形”的尺规作图过程.
已知:线段AB.
求作:菱形ACBD.
作法:如图,
①以点A为圆心,以AB长为半径作⊙A;
②以点 B为圆心,以AB长为半径作⊙B,
交⊙A 于C,D两点;
③连接AC,BC,BD,AD.
所以四边形ACBD就是所求作的菱形.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:∵点B,C,D在⊙A上,
∴AB=AC=AD( )(填推理的依据).
同理 ∵点A,C,D在⊙B上,
∴AB=BC=BD.
∴ = = = .
∴四边形ACBD是菱形. ( )(填推理的依据).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com