精英家教网 > 初中数学 > 题目详情
(2013•桂林)如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:
(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
分析:(1)根据矩形的性质可得∠B=∠C=90°,AB=DC,然后求出BF=CE,再利用“边角边”证明△ABF和△DCE全等即可;
(2)根据全等三角形对应角相等可得∠BAF=∠EDC,然后求出∠DAF=∠EDA,然后根据等腰三角形的定义证明即可.
解答:证明:(1)在矩形ABCD中,∠B=∠C=90°,AB=DC,
∵BE=CF,BF=BC-FC,CE=BC-BE,
∴BF=CE,
在△ABF和△DCE中,
AB=DC
∠B=∠C
BF=CE

∴△ABF≌△DCE(SAS);

(2)∵△ABF≌△DCE,
∴∠BAF=∠EDC,
∵∠DAF=90°-∠BAF,∠EDA=90°-∠EDC,
∴∠DAF=∠EDA,
∴△AOD是等腰三角形.
点评:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形的判定,熟记性质确定出三角形全等的条件是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•桂林)如图,与∠1是同位角的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE=
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2,当点P从点C运动到点D时,线段O1O2中点G的运动路径的长是
3
2
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,过点D作DE⊥AD交AB于E,以AE为直径作⊙O.
(1)求证:点D在⊙O上;
(2)求证:BC是⊙O的切线;
(3)若AC=6,BC=8,求△BDE的面积.

查看答案和解析>>

同步练习册答案