精英家教网 > 初中数学 > 题目详情
9.已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.
解:过P点作PM∥AB交AC于点M.
∵AB∥CD,(已知)
∴∠BAC+∠ACD=180°. (两直线平行,同旁内角互补)
∵PM∥AB,
∴∠1=∠2,(两直线平行,内错角相等)
且PM∥DC.(平行于同一直线的两直线也互相平行)
∴∠3=∠4. (两直线平行,内错角相等)
∵AP平分∠BAC,CP平分∠ACD,(已知)
∴∠1=$\frac{1}{2}$∠BAC,∠4=$\frac{1}{2}$ACD.
∴∠1+∠4=$\frac{1}{2}$∠BAC+$\frac{1}{2}$∠ACD=90°.
∴∠APC=∠2+∠3=∠1+∠4=90°.
总结:两直线平行时,同旁内角的角平分线互相垂直.

分析 直接利用平行线的性质与判定以及平行公理分别分析得出答案.

解答 解:过P点作PM∥AB交AC于点M.
∵AB∥CD,( 已知)
∴∠BAC+∠ACD=180°. (两直线平行,同旁内角互补 )
∵PM∥AB,
∴∠1=∠2,(两直线平行,内错角相等)
且PM∥DC.(平行于同一直线的两直线也互相平行)
∴∠3=∠4. (两直线平行,内错角相等)
∵AP平分∠BAC,CP平分∠ACD,(已知)
∴∠1=$\frac{1}{2}$∠BAC,∠4=$\frac{1}{2}$ACD.
∴∠1+∠4=$\frac{1}{2}$∠BAC+$\frac{1}{2}$∠ACD=90°.
∴∠APC=∠2+∠3=∠1+∠4=90°.
总结:两直线平行时,同旁内角的角平分线互相垂直.
故答案为:已知;两直线平行,同旁内角互补;2;两直线平行,内错角相等,DC;4;两直线平行,内错角相等;已知;互相垂直.

点评 此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.当n为整数时,(n+1)2-(n-1)2能被4整除吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解方程
(1)5x3=-40
(2)4(x-1)2=9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上任意一点,延长AG,与DC的延长线交于点F,连接AD,GD,CG.
(1)求证:∠AGD=∠FGC;
(2)若AG•AF=48,CD=4$\sqrt{3}$,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知:在正方形ABCD中,点P为对角线BD上一点,连接CP,作PE⊥PC交直线AB于E,作EQ⊥BD交直线BD于Q.
(1)在图1中,当点P与对角线交点O重合时,易知点E,点Q都与点B重合,猜想CD与PQ的数量关系为CD=$\sqrt{2}$PQ;
(2)如图2,当P在线段DO上(不与D、O重合)移动时,(1)中的猜想还成立么,若成立,请证明;不成立请说明理由.
(3)当P在线段BO上(不与B、O重合)移动时,如图3,请你画出图形,(1)中的猜想还成立么,若成立,请直接写出结论;不成立请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,点C在反比例函数y=$\frac{1}{x}$的图象上,CA∥y轴,交反比例函数y=$\frac{3}{x}$的图象于点A,CB∥x轴,交反比例函数y=$\frac{3}{x}$的图象于点B,连结AB、OA和OB,已知CA=2,则△ABO的面积为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.甲、乙两人骑车分别从A、B两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B地后停留20min再以原速返回A地,当两人到达A地后停止骑行.设甲出发xmin后距离A地的路程为ykm.图中的折线表示甲在整个骑行过程中y与x的函数关系.
(1)A、B两地之间的路程是25km;
(2)求甲从B地返回A地时,y与x的函数表达式;
(3)在整个骑行过程中,两人只相遇了1次,乙的骑行速度可能是D.
A.0.1   B.0.15    C.0.2   D.0.25.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知一个三角形的两条边长分别是1cm和2cm,一个内角为40°(请在图中标出已知角的度数和已知边的长度,用直尺和圆规作图时,不写作法,保留作图痕迹).
(1)如图,请你用直尺和圆规画出一个满足题设条件的三角形.
(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,则用直尺和圆规画出所有这样的三角形;若不能,则说明理由.
(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°”,那么满足这一条件,且彼此不全等的三角形共有4个.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.某中学校园内有一块长30m,宽22m的草坪,中间有两条宽2m的小路,把草坪分成了4块,如图所示,则草坪的面积560m2

查看答案和解析>>

同步练习册答案