【题目】如图,等边△ABD与等边△ACE,连接BE、CD,BE的延长线与CD交于点F,下列结论:(1)BE=CD ;(2)AF平分∠EAC ; (3)∠BFD=60°;(4)AF+FD=BF 其中正确的有( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】
(1)先证△BAE≌△DAC,即可得到BE=CD;
(2)利用四点共圆的判定证出A、E、F、C四点共圆,再利用反证法假设(2)成立得到与条件矛盾即可说明假设不成立;
(3)根据A、E、F、C四点共圆,可求出∠EFC,然后就可求∠BFD;
(4)利用截长补短法:在BF上找到点G使得FG=FA,先证△AFG是等边三角形,再证
△BAG≌△DAF即可证出结论.
在BF上找到点G使得FG=FA,如下图所示:
∵△ABD和△ACE是等边三角形
∴∠BAD=∠EAC=60°,AB=AD,AE=AC
∴∠BAD-∠EAD=∠EAC-∠EAD
∴∠BAE=∠DAC,
在△BAE和△DAC中,
∴△BAE≌△DAC,(SAS)
∴BE=CD,故(1)正确;
∠BEA=∠ACD,
∵∠AEB+∠AEF=180°,
∴∠AEF+∠ACF=180°,
∴A、E、F、C四点共圆,
∴假设(2)正确,即∠EAF=∠CAF
由圆的性质可得EF=FC
∴∠FEC=∠FCE
∴∠FEC+∠AEC=∠FCE+∠ACE
∴∠AEF=∠ACF
又∵∠AEF+∠ACF=180°(已证)
∴∠AEF=∠ACF=90°
而题中的∠AEF是动角,不一定是90°,矛盾,
故(2)不一定正确;
∵A、E、F、C四点共圆,∠EAC=60°
∴∠EFC=120°,
∴∠BFD=180°-∠EFC =60°,故(3)正确;
∵AE=AC,
∴∠AFC=∠AFE=∠EFC=60°
∵FG=FA,
∴△AFG是等边三角形,
∴AG=AF,∠FAG=60°
∵∠BAG+∠GAD=60°,∠FAD+∠GAD =60°,
∴∠BAG =∠FAD,
在△BAG和△DAF中,
∴△BAG≌△DAF(SAS),
∴BG=FD,
∴AF+FD=FG+BG=BF,故(4)正确;
∴正确的结论有3个.
故选C.
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距480km,一辆货车从甲地匀速驶往乙地,货车出发一段时间后,一辆汽车从乙地匀速驶往甲地,设货车行驶的时间为线段OA表示货车离甲地的距离与xh的函数图象;折线BCDE表示汽车距离甲地的距离与的函数图象.
求线段OA与线段CD所表示的函数表达式;
若OA与CD相交于点F,求点F的坐标,并解释点F的实际意义;
当x为何值时,两车相距100千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).
(1)若α=70°,β=40°,求∠DCE的度数;
(2)试用α、β的代数式表示∠DCE的度数(直接写出结果);
(3)如图②,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且α﹣β=30°,求∠DCE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙只捕捞船同时从A港出海捕鱼,甲船以每小时15 km的速度沿北偏西60°方向前进,乙船以每小时15 km的速度沿东北方向前进.甲船航行2 h到达C处,此时甲船发现渔具丢在了乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶乙船,结果两船在B处相遇.问:
(1)甲船从C处出发追赶上乙船用了多少时间?
(2)甲船追赶乙船的速度是每小时多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在中,,,是过点的一条直线,且点在线段上时,于点,于点.易证:.
(1)如图②,点在线段的延长线时,其余条件不变,问与,的关系如何?请证明;
(2)如图③,点在线段的延长线时,其余条件不变,问与的关系如何?请直接写出结果,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的面积为1cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B…;依此类推,则平行四边形AO2016C2017B的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图, △ABC中,AB=AC,D在AC上,E在BC上,A E,B D交于F,∠AFD=60°,∠FDC+∠FEC=180°.
(1)求证:BE=CD.
(2)如图2,过点D作DG⊥AF于G,直接写出AE ,FG, BF的关系.
(3)如图3,在(2)的条件下,连接CG,若FG=BF,△AGD的面积等于5,求GC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是( )
A. ∠E=2∠K B. BC=2HI C. 六边形ABCDEF的周长=六边形GHIJKL的周长 D. S六边形ABCDEF=2S六边形GHIJKL
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=30°,点M,N分别在边OA,OB上,OM=5,ON=12,点P,Q分别在边OB,OA上运动,连接MP,PQ,QN,则MP+PQ+QN的最小值为 ______ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com