精英家教网 > 初中数学 > 题目详情
17.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的⊙O的切线交OP的延长线于点C.
(1)求证:CP=CB;
(2)若⊙O的半径为3,OC=5,求点O到AB的距离.

分析 (1)要证明RP=RQ,需要证明∠PQR=∠RPQ,连接OQ,则∠OQR=90°;根据OB=OQ,得∠B=∠OQB,再根据等角的余角相等即可证明;
(2)过O作OD⊥AB于D,根据BC是⊙O的切线,得到∠OBC=90°,由勾股定理得到BC=$\sqrt{O{C}^{2}-O{B}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,求得PC=BC=4,OP=1,由勾股定理得到AP=$\sqrt{A{O}^{2}+O{P}^{2}}$=$\sqrt{26}$,求出AD=$\frac{25}{\sqrt{26}}$=$\frac{25\sqrt{26}}{26}$,然后由勾股定理即可得到结论.

解答 (1)证明:连接OB,
∵BC是⊙O的切线,
∴∠OBA+∠ABC=90°,
∵OP⊥OA,
∴∠OPA+∠A=90°,
又∵OB=OA,
∴∠A=∠OBA,
∴∠ABC=∠OPA=∠CPB,
∴CP=CB;

(2)解:过O作OD⊥AB于D,
∵BC是⊙O的切线,
∴∠OBC=90°,
∴BC=$\sqrt{O{C}^{2}-O{B}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∴PC=BC=4,
∴OP=1,
∵∠AOP=90°,
∴AP=$\sqrt{A{O}^{2}+O{P}^{2}}$=$\sqrt{26}$,
∴AO2=AP•AD,
∴AD=$\frac{25}{\sqrt{26}}$=$\frac{25\sqrt{26}}{26}$,
∴OD=$\sqrt{A{O}^{2}-A{D}^{2}}$=$\frac{5\sqrt{26}}{26}$.

点评 本题考查了切线的性质,勾股定理,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.关于x的分式方程$\frac{5}{x}=\frac{a}{x-2}$有解,则字母a的取值范围是a≠5,a≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.一次函数y=kx+b的图象经过点(1,-2),并平行于直线y=-6x+22,那么此一次函数解析式为y=-6x+4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s的速度向A点运动.设运动时间为x(s).
(1)当x为何值时,PQ∥BC;
(2)当△APQ与△CQB相似时,AP的长为$\frac{40}{9}$cm或20cm;
(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.
(1)若BC=10,则△ADE周长是10;
(2)若∠BAC=128°,则∠DAE的度数是76°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°),得到正方形OE′F′G′;
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为2,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(2,-2),“象”位于点(4,-2),则“炮”位于点(  )
A.(1,3)B.(0,1)C.(-1,2)D.(-2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图所示,BC是半圆O的直径,AD⊥BC,垂足为D,AB弧长等于AF弧长,BF与AD、AO分别交于点E、G.
(1)证明:∠DAO=∠FBC;
(2)证明:AE=BE.

查看答案和解析>>

同步练习册答案