精英家教网 > 初中数学 > 题目详情

【题目】下面是小明设计的在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等的尺规作图过程:

已知:△ABC

求作:点D,使得点DBC边上,且到ABAC边的距离相等.

作法:如图,

作∠BAC的平分线,交BC于点D.则点D即为所求.

根据小明设计的尺规作图过程,

1)使用直尺和圆规,补全图形 (保留作图痕迹)

2)完成下面的证明.

证明:作DEAB于点E,作DFAC于点F

AD平分∠BAC

= ( ) (填推理的依据)

【答案】1)详见解析;(2DEDF,角平分线上的点到角两边的距离相等.

【解析】

(1)根据尺规作图——角平分线的做法画图即可得到答案;

(2)根据角平分线上的点到角两边的距离相等即可得到答案;

解:(1)作∠BAC的角平分线,如图:

(2)作DE⊥AB于点E,作DF⊥AC于点F

AD平分∠BAC

DE=DF(角平分线上的点到角两边的距离相等).

故答案为DEDF,角平分线上的点到角两边的距离相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,对折矩形纸片ABCD,使ADBC重合,得到折痕EF,将纸片展平,再次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,再展平纸片,连接MNBN.下列结论一定正确的是(

A.B.

C.BMEN互相平分D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB的坐标分别为(14)(44),抛物线yax+m2+n的顶点在线段AB上,与x轴交于CD两点(CD的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小明设计的在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等的尺规作图过程:

已知:△ABC

求作:点D,使得点DBC边上,且到ABAC边的距离相等.

作法:如图,

作∠BAC的平分线,交BC于点D.则点D即为所求.

根据小明设计的尺规作图过程,

1)使用直尺和圆规,补全图形 (保留作图痕迹)

2)完成下面的证明.

证明:作DEAB于点E,作DFAC于点F

AD平分∠BAC

= ( ) (填推理的依据)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,ECD边上一点(CE>DE),AEBD交于点F

1)如图1,过点FGHAE,分别交边ADBC于点GH

求证:∠EAB=GHC

2AE的垂直平分线分别与ADAEBD交于点PMN,连接CN

①依题意补全图形;

1 备用图

②用等式表示线段AECN之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,函数)的图象G与直线交于点A41),点B1n)(n≥4n为整数)在直线l上.

1)求的值;

2)横、纵坐标都是整数的点叫做整点.记图象与直线l围成的区域(不含边界)为W

①当n=5时,求的值,并写出区域W内的整点个数;

②若区域W内恰有5个整点,结合函数图象,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)·儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩

具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5

倍,但每套进价多了10元.

1)求第一批玩具每套的进价是多少元?

2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一部记录片播放了关于地震的资料及一个有关地震预测的讨论,一位专家指出:在未来20年,A城市发生地震的机会是三分之二

对这位专家的陈述下面有四个推断:

×20≈13.3,所以今后的13年至14年间,A城市会发生一次地震;

大于50%,所以未来20年,A城市一定发生地震;

在未来20年,A城市发生地震的可能性大于不发生地震的可能性;

不能确定在未来20年,A城市是否会发生地震;

其中合理的是(   )

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:

(1)求n的值;

(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;

(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.

查看答案和解析>>

同步练习册答案