精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AD是高,BD6CD4tanBADP是线段AD上一动点,一机器人从点A出发沿AD个单位/秒的速度走到P点,然后以1个单位/秒的速度沿PC走到C点,共用了t秒,则t的最小值为_____

【答案】8

【解析】

PHABH,根据锐角三角函数求得AD=8,根据勾股定理求得AB=10,设机器从A运动到P点用x秒,则从P点运动到C用了(tx)秒,当点CPH共线时,PC+PH的值最小,即t的值最小,可求得t的最小值.

解:作PHABH,如图,

AD是高,

∴∠ADB=∠ADC90°

tanBAD

AD×68

AB10

设机器从A运动到P点用x秒,则从P点运动到C用了(tx)秒,

APxPCtx

RtABD中,sinBAD

RtAPH中,sinPAH

PHxx

PC+PHx+txt

而点CPH共线时,PC+PH的值最小,即t的值最小,

此时CHAB

RtABD中,sinB

RtBCH中,∴sinB

CH×(4+6)8

t的最小值为8

故答案为8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下小明从中任意抽取一张记下数字后放回洗匀然后小亮从中任意抽取一张计算小明和小亮抽得的两个数字之和若和为奇数则小明胜;若和为偶数则小亮胜

(1)请你用画树状图或列表的方法求出这两数和为6的概率

(2)你认为这个游戏规则对双方公平吗?说说你的理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.

(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;

(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.

1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?

2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?

3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高3米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有27米的距离(BFC在一条直线上).

(1)求办公楼AB的高度;

(2)若要在AE之间挂一些彩旗,请你求出AE之间的距离.

(参考数据:sin22°cos22°tan22°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?

小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:

(1)画出几何图形,明确条件和探究对象;

如图2,在RtABC中,∠C90°ACBC6cmD是线段AB上一动点,射线DEBC于点E,∠EDF_____°,射线DF与射线AC交于点F.设BE两点间的距离为xcmEF两点间的距离为ycm

(2)通过取点、画图、测量,得到了xy的几组值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

6.9

5.3

4.0

3.3

____

4.5

6

(说明:补全表格时相关数据保留一位小数)

(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为_____cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015227日,在中央全面深化改革领导小组第十次会议上,审议通过了《中国足球改革总体方案》,体制改革、联赛改革、校园足球等成为改革的亮点.在联赛方面,作为国内最高水平的联赛﹣﹣中国足球超级联赛今年已经进入第12个年头,中超联赛已经引起了世界的关注.图9是某一年截止倒数第二轮比赛各队的积分统计图.

(1)根据图,请计算该年有_____支中超球队参赛;

(2)补全图一中的条形统计图;

(3)根据足球比赛规则,胜一场得3分,平一场得1分,负一场得0分,最后得分最高者为冠军.倒数第二轮比赛后积分位于前4名的分别是A49分,B49分,C48分,D45分.在最后一轮的比赛中,他们分别和第4名以后的球队进行比赛,已知在已经结束的一场比赛中,A队和对手打平.请用列表或者画树状图的方法,计算C队夺得冠军的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F

1求证:AEFDEB

2证明四边形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出

(1)如图①,在ABC中,∠A=120°,AB=AC=5,则ABC的外接圆半径R的值为

问题探究

(2)如图②O的半径为13,弦AB=24,MAB的中点,P是⊙O上一动点,求PM的最大值.

问题解决

(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在线段ABAC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EFFP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).

图① 图② 图③

查看答案和解析>>

同步练习册答案