精英家教网 > 初中数学 > 题目详情
八年级数学学习合作小组在学过《图形的相似》这一章后,发现可将相似三角形的定义、判定以及性质拓展到矩形、菱形的相似中去.如:我们可以定义:“长和宽之比相等的矩形是相似矩形.”相似矩形也有以下的性质:相似矩形的对角线之比等于相似比,周长比等于相似比,面积比等于相似比的平方等等.请你参与这个学习小组,一同探索这类问题:

(1)写出判定菱形相似的一种判定方法:若有一组角对应相等(或两组对角线对应成比例),则这两个菱形相似;
(2)如图,将菱形ABCD沿着直线AC向右平移后得到菱形A′B′C′D′,试证明:四边形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=,菱形A′FCE的面积是菱形ABCD面积的一半,求平移的距离AA′的长.

试题分析:相似多边形的面积的比等于相似比的平方,因而已知面积的比,就可以求出边长的比,求出A′C的长就可以解决.
解:(1)有一组角对应相等(或两组对角线对应成比例);(3分)
(2)利用AD∥A′E,AB∥A′F,得∠DAB=∠D′A′B′
再利用(1)的结论,得到证明;(6分)
(3)∵菱形ABCD∽菱形A′FCE,菱形A′FCE的面积是菱形ABCD面积的一半,
∴菱形ABCD与菱形A′FCE的面积比为2:1,
∴对应边之比为:1,即AC:A′C=:1,(7分)
∵AC=
∴A′C=1,(9分)
∴AA′=﹣1.(10分)
点评:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,正方形ABCD的边长是1,P是CD的中点,点Q是线段BC上一动点,当BQ为何值时,以A、D、P为顶点的三角形与以Q、C、P为顶点的三角形相似.
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,D、E分别是AB和AC的中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=     ,△ADE与△ABC的周长之比为     ,△CFG与△BFD的面积之比为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△BnCnMn的面积为Sn,则Sn=   .(用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列叙述正确的是(  )
A.所有的矩形都相似
B.有一个锐角相等的直角三角形相似
C.边数相同的多边形一定相似
D.所有的等腰三角形相似

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将平行四边形AEFG变换到平行四边形ABCD,其中E,G分别是AB,AD的中点,下列叙述正确的有  (填序号,多选不给分,少选可以酌情给分).
①这种变换是相似变换;②对应边扩大到原来的2倍;③各对应角扩大到原来的2倍;④周长扩大到原来的2倍;⑤面积扩大到原来的4倍.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在1×3的矩形内不重叠地放两个与大矩形相似的小矩形,且每个小矩形的每条边与大矩形的一条边平行.
(Ⅰ)如图①放置时,两个小矩形周长和(两个小矩形重叠的边要重复计算)为  
(Ⅱ)怎样放置才能使两个小矩形周长和最大?在图②中画出图形,其最大值为  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是(  )
A.∠ABD=∠CB.∠ADB=∠ABCC.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

中,对角线为BD延长线上一点且为等边三角形,的平分线相交于点,连接,连接

(1)若的面积为,求的长;
(2)求证:

查看答案和解析>>

同步练习册答案