精英家教网 > 初中数学 > 题目详情
如图1,已知点P是线段AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.
(1)求证:△APD≌△CPB.
(2)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于90°),这种情况“△APD≌△CPB”的结论还成立吗?请说明理由.
(3)如图1,设∠AQC=α,求α的度数.
分析:(1)由正三角形的三条边、三个内角都相等的性质,根据全等三角形的判定定理SAS证得结论;
(2)证法同(1);
(3)根据(1)中全等三角形的对应角相等,然后根据三角形的外角的性质即可求解.
解答:(1)证明:如图1,∵△APC、△BDP是等边三角形,
∴PA=PC,PD=PB,∠APC=∠BPD=60°,
∴∠APD=∠CPB,
∴在△APD与△CPB中,
PA=PC
∠APD=∠CPB
PD=PB

∴△APD≌△CPB(SAS);

(2)成立.理由如下:
如图2,∵△APC、△BDP是等边三角形,
∴PA=PC,PD=PB,∠APC=∠BPD=60°,
∴∠APD=∠CPB,
∴在△APD与△CPB中,
PA=PC
∠APD=∠CPB
PD=PB

∴△APD≌△CPB(SAS);

(3)由(1)知,△APD≌△CPB,
∴∠PAD=∠PCB,
∵∠QAP+∠QAC+∠ACP=120°,
∴∠QCP+∠QAC+∠ACP=120°,
∴∠AQC=180°-120°=60°,即α=60°.
点评:本题考查了旋转的性质,以及全等三角形的判定与性质,正确证明两个三角形全等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

29、先阅读理解两条正确结论,并用这两条结论完成应用与探究.阅读:
正确结论1.在图甲△ABC中,如果D是AB的中点,DE∥BC交AC于点E,那么E也是AC的中点,及DE是中位线.
正确结论2.在图乙梯形ABCD中,如果E为腰AB的中点且EF∥AD∥BC.那么F也是CD的中点,及EF是中位线.
应用:如图丙,已知,MN是平行四边形ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.求证:AA′+CC′=BB′+DD′.
探究:如图丁,若直线MN向上移动,使点C在直线一侧,A、B、D三点在直线另一侧,则垂线段AA′、BB′、CC′、DD′之间存在什么关系?先对结论进行猜想,然后加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•潮阳区模拟)如图1,已知四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,
(1)若取AB的中点M,可证AE=EF,请写出证明过程.
(2)如图2,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变,那么结论“AE=EF”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

一数学研究小组探究了以下相关的两个问题,请你也试试.
(1)如图1,已知△ABC,BO、CO分别是∠ABC、∠ACB的平分线.试探究∠A与∠BOC的度数之间的关系.
(2)如图2,已知点O是△ABC内切圆的圆心,点O′是△ABC外接圆的圆心.试探究∠BOC与∠BO′C的度数之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

一数学研究小组探究了以下相关的两个问题,请你也试试.
(1)如图1,已知△ABC,BO、CO分别是∠ABC、∠ACB的平分线.试探究∠A与∠BOC的度数之间的关系.
(2)如图2,已知点O是△ABC内切圆的圆心,点O′是△ABC外接圆的圆心.试探究∠BOC与∠BO′C的度数之间的关系.

查看答案和解析>>

科目:初中数学 来源:2008年四川省乐山市沐川县中考数学一模试卷(解析版) 题型:解答题

先阅读理解两条正确结论,并用这两条结论完成应用与探究.阅读:
正确结论1.在图甲△ABC中,如果D是AB的中点,DE∥BC交AC于点E,那么E也是AC的中点,及DE是中位线.
正确结论2.在图乙梯形ABCD中,如果E为腰AB的中点且EF∥AD∥BC.那么F也是CD的中点,及EF是中位线.
应用:如图丙,已知,MN是平行四边形ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.求证:AA′+CC′=BB′+DD′.
探究:如图丁,若直线MN向上移动,使点C在直线一侧,A、B、D三点在直线另一侧,则垂线段AA′、BB′、CC′、DD′之间存在什么关系?先对结论进行猜想,然后加以证明.

查看答案和解析>>

同步练习册答案