精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,点E在边CD(不与点CD重合),连接AEBD交于点F.

1)若点ECD中点,AB2,求AF的长.

2)若AFB2,求的值.

3)若点G在线段BF上,且GF2BG,连接AGCG,设x,四边形AGCE的面积为ABG的面积为,求的最大值.

【答案】1;(2;(3.

【解析】

1)由可得DE的长,利用勾股定理可得AE的长,又易证,由相似三角形的性质可得,求解即可得;

2)如图(见解析),连接ACBD交于点O,由正方形的性质可知,,设,在中,可求出,从而可得DFBF的长,即可得出答案;

3)设正方形的边长,可得DEAOBOBD的长,由可得BF的长,又根据可得BG的长,从而可得的面积,用正方形的面积减去三个三角形的面积可得四边形AGCE的面积,再利用二次函数的性质求解的最大值.

1CD中点,

,即

2)如图,连接ACBD交于点O

由正方形的性质得

中,

3)设正方形的边长,则

由(1)知

由二次函数图象的性质得:当时,有最大值,最大值为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,则这个矩形是给定矩形的减半矩形.如图矩形是矩形ABCD减半矩形.

请你解决下列问题:

1)当矩形的长和宽分别为1,2时,它是否存在减半矩形?请作出判断,并请说明理由;

2)边长为的正方形存在减半正方形吗?如果存在,求出减半正方形的边长;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.

(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;

(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.

(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;

(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料,解决问题:

材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可,推广成一条结论;末位能被整除的数,本身必能被整除,反过来,末位不能被整除的数,本身也不可能被整除,例如判断992250能否被25、625整除时,可按下列步骤计算:

为整数,能被25整除

不为整数,不能被625整除

材料2:用奇偶位差法判断一个数能否被11这个数整除时,可把这个数的奇位上的数字与偶位上的数字分别加起来,再求它们的差,看差能否被11整除,若差能被11整除,则原数能被11整除,反之则不能.

(1)若这个三位数能被11整除,则  ;在该三位数末尾加上和为8的两个数字,让其成为一个五位数,该五位数仍能被11整除,求这个五位数

(2)若一个六位数p的最高位数字为5,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是角平分钱,点E在AC上,且EAD=ADE.

1求证:DCE∽△BCA;

2若AB=3,AC=4.求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.

(1)求温馨提示牌和垃圾箱的单价各是多少元?

(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cx轴交于A-10),B30)两点.

1)求该抛物线的解析式;

2)求该抛物线的对称轴以及顶点坐标;

3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点QEF分别在BCABAC上(点E与点A、点B均不重合).

(1)当AE=8时,求EF的长;

(2)设AEx,矩形EFPQ的面积为y

yx的函数关系式;

x为何值时,y有最大值,最大值是多少?

(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求St的函数关系式,并写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y= x24x3.

1)把这个二次函数化成的形式并写出抛物线的顶点坐标;

2)画出这个二次函数的图象,并利用图象直接写出当y>0时,x的取值范围. x取何值时,yx的增大而减小;

3)若抛物线与轴的交点记为AB,该图象上存在一点C,且ABC的面积为3,求点C的坐标.

查看答案和解析>>

同步练习册答案