精英家教网 > 初中数学 > 题目详情

【题目】探究:如图,在△ABC 中,∠BAC=90°,AB=AC,直线 m 经过点 A,BD⊥m 于点 D,CE⊥m 于点 E,求证:△ABD≌△CAE.

应用:如图,在△ABC 中,AB=AC,D、A、E 三点都在直线 m 上,并且有∠BDA=∠AEC=∠BAC,求证:DE=BD+CE.

【答案】证明见解析

【解析】

(1)根据BD⊥直线m,CE⊥直线m得∠BDA=CEA=90,而∠BAC=90,根据等角的余角相等得∠CAE=ABD,然后根据“AAS”可判断△ADB≌△CEA.AE=BD,AD=CE,于是DE=AE+AD=BD+CE;

(2)利用∠BDA=BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,得出∠CAE=ABD,进而得出△ADB≌△CEA即可得出答案.

证明:(1)∵BD⊥直线m,CE⊥直线m,

∴∠BDA=∠CEA=90°,

∵∠BAC=90°

∴∠BAD+∠CAE=90°,

∵∠BAD+∠ABD=90°,

∴∠CAE=∠ABD,

∵在△ADB和△CEA中

∴△ADB≌△CEA(AAS);

(2)设∠BDA=∠BAC=α,

∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,

∴∠CAE=∠ABD,

∵在△ADB和△CEA中

∴△ADB≌△CEA(AAS),

∴AE=BD,AD=CE,

∴DE=AE+AD=BD+CE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】尝试探究并解答:

(1)为了求代数式x2+2x+3的值我们必须知道x的值x=1,则这个代数式的值为   x=2,则这个代数式的值为   可见这个代数式的值因x的取值不同而   填“变化”或“不变”.尽管如此我们还是有办法来考虑这个代数式的值的范围

(2)本学期我们学习了形如a2+2ab+b2a2﹣2ab+b2的式子我们把这样的多项式叫做“完全平方式”在运用完全平方公式进行因式分解时关键是判断这个多项式是不是一个完全平方式同样地把一个多项式进行部分因式分解可以解决代数式的最大或最小值问题例如x2+2x+3=(x2+2x+1)+2=(x+1)2+2,因为x+1)2≥0,所以x+1)2+2≥2,所以这个代数式x2+2x+3有最小值是2,这时相应的x的值是   

(3)猜想:①4x2﹣12x+13的最小值是   

②﹣x2﹣2x+3   填“最大”或“最小”).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为acm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》中有这样一道题,原文是:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步(两人的步长相同).走路慢的人先走100步,走路快的人要走多少步才能追上走路慢的人(两人走的路线相同)?试求解这个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下面的例题,再解答后面的题目.

例:已知x2+y2﹣2x+4y+5=0,求x+y的值.

解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,

即(x﹣1)2+(y+2)2=0.

因为(x﹣1)2≥0,(y+2)2≥0,它们的和为0,

所以必有(x﹣1)2=0,(y+2)2=0,

所以x=1,y=﹣2.

所以x+y=﹣1.

题目:已知x2+4y2﹣6x+4y+10=0,求xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.
(1)求证:△AEC∽△DEB;
(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目.以下是根据调查结果绘制的统计图表的一部分:

类别

A

B

C

D

E

节目类型

新闻

体育

动画

娱乐

戏曲

人数

12

30

54

9

根据以上信息,解答下列问题:

(1)被调查的学生中,最喜爱体育节目的有多少人,这些学生数占被调查总人数的百分比为多少;

(2)被调查学生的总人数为多少人,统计表中的值为多少,统计图中的值为多少;

(3)求在统计图中,B类所对应扇形圆心角的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,要判定AB∥CD,需要哪些条件?根据是什么?

查看答案和解析>>

同步练习册答案