精英家教网 > 初中数学 > 题目详情
(2008•菏泽)只用下列图形不能镶嵌的是( )
A.三角形
B.四边形
C.正五边形
D.正六边形
【答案】分析:任意三角形的内角和是180°,放在同一顶点处6个即能组成镶嵌.同理四边形的内角和是360°,也能组成镶嵌.正六边形的每个内角是120°,正五边形每个内角是180°-360°÷5=108°,其中180°,360°,120°能整除360°,所以不适用的是正五边形.
解答:解:A、任意三角形的内角和是180°,放在同一顶点处6个即能密铺;
B、任意四边形的内角和是360°,放在同一顶点处4个即能密铺;
C、正五边形的每一个内角是180°-360°÷5=108°,不能整除360°,所以不能密铺;
D、正六边形每个内角是120度,能整除360°,可以密铺.
故选C.
点评:本题考查一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.
练习册系列答案
相关习题

科目:初中数学 来源:2009年四川省攀枝花市东区中考数学二模试卷(解析版) 题型:解答题

(2008•菏泽)(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:
①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省中考统考数学模拟试卷(5)(解析版) 题型:解答题

(2008•菏泽)(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:
①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.

查看答案和解析>>

科目:初中数学 来源:2009年河南省油田中招一模试卷(解析版) 题型:解答题

(2008•菏泽)(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:
①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.

查看答案和解析>>

科目:初中数学 来源:2008年山东省日照市中考数学试卷(解析版) 题型:解答题

(2008•菏泽)(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:
①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.

查看答案和解析>>

科目:初中数学 来源:2008年山东省莱芜市中考数学试卷(解析版) 题型:解答题

(2008•菏泽)(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:
①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.

查看答案和解析>>

同步练习册答案