精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,弦CD与AB相交于E,DE=EC,过点B的切线与AD的延长线交于F,过E作EG⊥BC于G,延长GE交AD于H。
(1)求证:AH=HD;
(2)若,DF=9,求⊙O的半径。
(1)证明翙解析;(2)⊙O的半径为10.

试题分析:(1)由AB为⊙O的直径,DE=EC,根据垂径定理的推论,可证得AB⊥CD,又由EG⊥BC,易证得∠CDA=∠DEH,即可得HD=EH,继而可证得AH=EH,则可证得结论;
(2)由AB为⊙O的直径,可得∠BDF=90°,由BF是切线,可得∠DBF=∠C,然后由三角函数的性质,求得BD的长,继而求得答案.
(1)证明:∵AB为⊙O的直径,DE=EC,
∴AB⊥CD,
∴∠C+∠CBE=90°,
∵EG⊥BC,
∴∠C+∠CEG=90°,
∴∠CBE=∠CEG,
∵∠CBE=∠CDA,∠CEG=∠DEH,
∴∠CDA=∠DEH,
∴HD=EH,
∵∠A+∠ADC=90°,∠AEH+∠DEH=90°,
∴AH=EH,
∴AH=HD;
(2)解:∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠BDF=90°,
∵BF是⊙O的切线,
∴∠DBF=∠C,
∵cos∠C=,DF=9,
∴tan∠DBF=
∴BD=
∵∠A=∠C,
∴sin∠A=
∴AB=
∴⊙O的半径为10.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-2,0)、B(4,0)、C(0,2).
(1)请用尺规作出△ABC的外接圆⊙P(保留作图痕迹,不写作法);
(2)求出(1)中外接圆圆心P的坐标;
(3)⊙P上是否存在一点Q,使得△QBC与△AOC相似?如果存在,请直接写出点Q 坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙的半径为,正方形顶点坐标为,顶点在⊙上运动.
(1)当点运动到与点在同一条直线上时,试证明直线与⊙相切;
(2)当直线与⊙相切时,求所在直线对应的函数关系式;
(3)设点的横坐标为,正方形的面积为,求之间的函数关系式,并求出的最大值与最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H,若,则∠ABC所对的弧长等于       (长度单位).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A、B、C、D在⊙O上,点D在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O的半径为4,点A、B、C在⊙O上,且∠ACB=45°,则弦AB的长是  .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,以点P(2,0)为圆心,为半径作圆,点M(a,b) 是⊙P上的一点,设,则的取值范围是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P,PC=,则图中阴影部分的面积为           (结果保留π).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过4次旋转后,顶点O经过的总路程为  ,经过61次旋转后,顶点O经过的总路程为  

查看答案和解析>>

同步练习册答案