精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,对角线AC与BD相交于点O,AF平分∠BAC,交BD于点F.
精英家教网
(1)求证:AB-OF=
1
2
AC

(2)点A1、点C1分别同时从A、C两点出发,以相同的速度运动相同的时间后同时停止,如图,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E⊥A1C1,垂足为E,请猜想EF1,AB与
1
2
A1C1
三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当A1E1=6,C1E1=4时,求BD的长.
分析:(1)可通过构建全等三角形来求解,过F作FG⊥AB于G,那么可通过角平分线上的点到角两边的距离相等得出OF=FG,通过全等三角形AOF和AGF可得出AO=AG,那么AB=AO+OF,而AC=2OA,由此可得证;

(2)本题作辅助线的方法与(1)类似,过F1作F1G1⊥AB,F1H1⊥BC,那么可证得四边形F1G1BH1是正方形,EF1=F1G1=F1H1,那么可得出F1就是三角形A1BC1的内心,根据直角三角形的内心公式可得出EF1=(A1B+BC1-A1C1)÷2,然后根据用AB分别表示出A1B,BC1,最后经过化简即可得出AB-EF1=
1
2
A1C1

(3)求BD的长,首先要求出AB的长,本题可借助(2)中,F1是三角形A1BC1的内心来解,那么我们不难看出E、G1、H1都应该是切点,根据切线长定理不难得出A1E+A1G1=A1C1+A1B-C1E-BG1,由于C1E=C1H1,BG1=BH1,A1E=A1G1因此式子可写成2A1E=A1C1+A1B-BC1,而(A1B-BC1)正好等于2A1A,由此可求出A1A的长,那么可根据勾股定理用AB表示出两条直角边,求出AB的长,然后即可得出BD的值.
解答:(1)证明:过F作FG⊥AB于G,
精英家教网
∵AF平分∠CAB,FO⊥AC,FG⊥AB,
∴OF=FG,
∵∠AOF=∠AGF=90°,AF=AF,OF=FG,
∴△AOF≌△AGF,
∴AO=AG,
直角三角形BGF中,∠DBA=45°,
∴FG=BG=OF,
∴AB=AG+BG=AO+OF=
1
2
AC+OF,
∴AB-OF=
1
2
AC.

(2)解:过F1作F1G1⊥A1B,过F1作F1H1⊥BC1,则四边形F1G1BH1是矩形.
同(1)可得EF1=F1G,因此四边形F1G1BH1是正方形.
∴EF1=G1F1=F1H1
即:F1是三角形A1BC1的内心,
∴EF1=(A1B+BC1-A1C1)÷2…①
∵A1B+BC1=AB+A1A+BC-CC1,而CC1=A1A,
∴A1B+BC1=2AB,
因此①式可写成:EF1=(2AB-A1C1)÷2,
即AB-EF1=
1
2
A1C1

(3)解:由(2)得,F1是三角形A1BC1的内心,且E1、G1、H1都是切点.
∴A1E=(A1C1+A1B-BC1)÷2,
如果设CC1=A1A=x,
A1E=[A1C1+(AB+x)-(AB-x)]÷2=(10+2x)÷2=6,
∴x=1,
在直角三角形A1BC1中,根据勾股定理有A1B2+BC12=AC12
即:(AB+1)2+(AB-1)2=100,
解得AB=7,
∴BD=7
2
点评:本题主要考查了正方形的性质,三角形的内接圆与内心等知识点,要注意的是后两问中,结合圆的知识来解会使问题更简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案