精英家教网 > 初中数学 > 题目详情
在课外活动中,一个小组测量学校旗杆的高度,如图,他们在距离旗杆底部B点8米的C点处竖立一根高为1.6米的标杆CD,当从标杆顶部D看旗杆顶部A点时,仰角刚好是35°,那么旗杆AB的高度(精确到0.1米)大约是( )
(参考数据:sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)

A.6.6
B.6.8
C.7
D.7.2
【答案】分析:过D作AB的垂线,在构造的直角三角形中,利用BC的长和已知的角的度数,利用正切函数可求得AB的长.
解答:解:过点D作DF⊥AB于F.
由题意则DF=BC,即DF=8米.
在直角△ADF中,∠ADF=35°,
AF=DFtan35°=8×0.7002=5.6016(米).
则AB=AF+FB=5.6016+1.6≈7.2(米).
故选D.
点评:本题主要利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐
 
.(填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见下图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离
 
. (填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
请你分别完成上述二个问题的解答过程.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在课外活动中,小明发明了一个在直角三角形中画锐角的平分线的方法,他的方法是:如图所示,在斜边AB上取一点E,使BE=BC,过点E作ED⊥AB,交AC于D,那么BD就是∠ABC的平分线,你认为对吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°;图②中,∠D=90°,∠F=45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).

(1)在△DEF沿AC方向移动的过程中,该同学发现:F、C两点间的距离逐渐
变小
变小
;连接FC,∠FCE的度数逐渐
变大
变大
.(填“不变”、“变大”或“变小”)
(2)△DEF在移动的过程中,∠FCE与∠CFE度数之和是否为定值,请加以说明;
(3)能否将△DEF移动至某位置,使F、C的连线与AB平行?请求出∠CFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在课外活动中,小明发明了一个在直角三角形中画锐角的平分线的方法,他的方法是:如图所示,在斜边AB上取一点E,使BE=BC,过点E作ED⊥AB,交AC于D,那么BD就是∠ABC的平分线,你认为对吗?为什么?

查看答案和解析>>

同步练习册答案