精英家教网 > 初中数学 > 题目详情

如图,在坐标系中放置矩形ABOC,点B、C分别在x轴和y轴上,且BO=8,OC=6.其中D为线段BO上的一个动点,连接AD,过A作AD的垂线交y轴于F点,并以AF、AD为边作矩形ADEF,(1)求证: △ABD∽△AFC

(2)连接EO.记EO与x轴的夹角为(如图),判断当点D在BO上运动时,∠大小是否总保持不变,若∠的大小不变,请求出tan∠的值;若∠的大小发生改变,请举例说明.(原创)

(1)∵∠BAC=∠FAD=90º

又∵∠FAC=90º-∠CAD;∠DAB=90º―∠CAD,

∴∠FAC=∠DAB

∵∠ABD=∠ACF=90º

∴△ADB∽△AFC

(2)∠的大小总保持不变

过E点作EG  ⊥x轴于G点

∵矩形ABOC和矩形ADEF中,∠BAD、∠EDO都与∠ADB互余,

∴∠BAD=∠EDO,

又∵∠FAC=∠DAB,∴∠FAC=∠EDO

而∠ACF=∠EGD=90º,AF=ED

 ∴△AFC≌△DEG(AAS)

∴DG=AC=BO,∴GO=BD

又由(1)知△ADG∽△ABE

∴在Rt△EOG中,tan∠

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中放置一直角三角板,其顶点为A(-1,0),B(0,
3
),精英家教网O(0,0),将此三角板绕原点O顺时针旋转90°,得到△A′B′O.
(1)如图,一抛物线经过点A,B,B′,求该抛物线解析式;
(2)设点P是在第一象限内抛物线上一动点,求使四边形PBAB′的面积达到最大时点P的坐标及面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把矩形OABC放置在直角坐标系中,OA=6,OC=8,若将矩形折叠,使点B与O重合,得精英家教网到折痕EF.
(1)可以通过
 
办法,使四边形AEFO变到四边形BEFC的位置(填“平移”、“旋转”或“翻转”);
(2)写出点E在坐标系中的位置即点E的坐标
 

(3)折痕EF的长为
 

(4)若直线l把矩形OABC的面积分成相等的两部分,则直线l必经过点
 
,写出经过这点的任意一条直线的函数关系式
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•苏州)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在坐标系中放置矩形ABOC,点B、C分别在x轴和y轴上,且BO=8,OC=6.其中D为线段BO上的一个动点,连接AD,过A作AD的垂线交y轴于F点,并以AF、AD为边作矩形ADEF.
(1)求证:△ABD∽△AFC;
(2)连接EO.记EO与x轴的夹角为α(如图),判断当点D在BO上运动时,∠α的大小是否总保持不变?若∠α的大小不变,请求出tan∠α的值;若∠α的大小发生改变,请举例说明.

查看答案和解析>>

同步练习册答案