精英家教网 > 初中数学 > 题目详情
(2012•莆田)如图,四边形ABCD是平行四边形,连接AC.
(1)请根据以下语句画图,并标上相应的字母(用黑色字迹的钢笔或签字笔画).
①过点A画AE⊥BC于点E;
②过点C画CF∥AE,交AD于点F;
(2)在完成(1)后的图形中(不再添加其它线段和字母),请你找出一对全等三角形,并予以证明.
分析:(1)根据语句要求画图即可;
(2)首先根据平行四边形的性质可得∠B=∠D,AB=CD,AD∥BC,再加上条件AE∥CF,可证出四边形AECF是平行四边形,根据平行四边形对角相等可得∠AEC=∠CFA,再根据等角的补角相等可得∠AEB=∠CFD,即可利用AAS证明△ABE≌△CDF.
解答:解:(1)如图所示:

(2)△ABE≌△CDF.
证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,AB=CD,AD∥BC,
∵AE∥CF,
∴四边形AECF是平行四边形,
∴∠AEC=∠CFA,
∴∠AEB=∠CFD,
在△ABE和△CDF中
∠AEB=∠CFD
∠B=∠D
AB=CD

∴△ABE≌△CDF(AAS).
点评:此题主要考查了画图,平行四边形的性质与判定,以及全等三角形的判定,关键是熟练掌握平行四边形的性质,全等三角形的判定方法:SSS、AAS、SAS、ASA.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•莆田)如图,点C在以AB为直径的半圆O上,延长BC到点D,使得CD=BC,过点D作DE⊥AB于点E,交AC于点F,点G为DF的中点,连接CG、OF、FB.
(1)求证:CG是⊙O的切线;
(2)若△AFB的面积是△DCG的面积的2倍,求证:OF∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莆田)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D-A-…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莆田)如图,△A′B′C′是由△ABC沿射线AC方向平移2cm得到,若AC=3cm,则A′C=
1
1
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莆田)如图,某种新型导弹从地面发射点L处发射,在初始竖直加速飞行阶段,导弹上升的高度y(km)与飞行时间x(s)之间的关系式为y=
1
18
x2+
1
6
x
 (0≤x≤10).发射3s后,导弹到达A点,此时位于与L同一水平面的R处雷达站测得AR的距离是2km,再过3s后,导弹到达B点.
(1)求发射点L与雷达站R之间的距离;
(2)当导弹到达B点时,求雷达站测得的仰角(即∠BRL)的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莆田)如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线y=ax2+bx+c(a≠0)过点A.

(1)求c的值;
(2)若a=-1,且抛物线与矩形有且只有三个交点A、D、E,求△ADE的面积S的最大值;
(3)若抛物线与矩形有且只有三个交点A、M、N,线段MN的垂直平分线l过点0,交线段BC于点F.当BF=1时,求抛物线的解析式.

查看答案和解析>>

同步练习册答案