精英家教网 > 初中数学 > 题目详情
已知,如图1,?ABCD中,∠BCD与∠ABC的平分线相交于点E,并与AD边相交点F,G.

(1)求证:∠BEC=90°;
(2)当点E,F,G三点重合时(图2),求的值;
(3)设△BEC的面积为S1,?ABCD的面积为S2.当时(图3),求的值.
【答案】分析:(1)先根据BE平分∠ABC,CE平分∠BCD可知∠ABC=2∠1,∠BCD=2∠2,再根据四边形ABCD是平行四边形可知∠ABC+∠BCD=180°,即2(∠1+∠2)=∠ABC+∠BCD=180°,进而可得出结论;
(2)由BE平分∠ABC,可知∠1=∠3,再根据四边形ABCD可知AD∥BC,∠1=∠5,∠3=∠5,故可得出AB=AE,同理可证,DC=DE,再由平行四边形的性质即可得出结论;
(3)由(1)(2)可知,在图2中,∠BEC=90°,AB=AG,CD=DF,设AB=CD=x,依题意,BC=AD=3x,AG=DF=x,故可得出GF=3x-2x=x,
作EN⊥BC,交BC于N,交AD于M,则ME=EN-MN,由AD∥BC可得出△EBC∽△EFG,根据相似三角形的性质即可得出结论.
解答:解:(1)在图1,图2,图3中,
∵BE平分∠ABC,CE平分∠BCD,
∴∠ABC=2∠1,∠BCD=2∠2,
∵?ABCD,
∴∠ABC+∠BCD=180°,
∴2(∠1+∠2)=∠ABC+∠BCD=180°,
∴∠1+∠2=90°,
∴∠BEC=90°;


(2)图2中,∵BE平分∠ABC,
∴∠1=∠3,
∵?ABCD,
∴AD∥BC,
∴∠1=∠5,
∴∠3=∠5,
∴AB=AE,
同理可证,DC=DE,
∵四边形ABCD是平行四边形,
∴AB=DC,BC=AD,
∴BC=2AB,
=2;

(3)在图3中,
由(1)(2)可知,在图2中,∠BEC=90°,AB=AG,CD=DF,
设AB=CD=x,依题意,BC=AD=3x,AG=DF=x,
∴GF=3x-2x=x,
作EN⊥BC,交BC于N,交AD于M,
则ME=EN-MN,
∵AD∥BC,
∴△EBC∽△EFG,

=3,
=×=
[方法II]由(1)(2)可知,在图4中,∠BEC=90°,AB=AG,CD=DF,
设AB=CD=x,依题意,BC=AD=3x,AG=DF=x,
∴GF=3x-2x=x,
作GI∥AB交BC于I,作FJ∥AB交BC于J,
易证菱形ABIG,菱形GIJF,菱形FJCD,
且这三个菱形等底等高,
因而三个菱形的面积相等.
设三个菱形的面积均为S,则S2=3S,
∵BG为菱形ABIG的对角线,CF为菱形DCJF的对角线,
∴S△BIG=S△CEJ=S
∴S梯形FGBC=2S,
∴S梯形FGBC=S2
∵AD∥BC,
∴△EBC∽△EFG,




点评:本题考查的是相似形综合题,涉及到相似三角形的判定与性质、平行四边形的性质、平行线的性质等相关知识,涉及面较广,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,DC∥AB,且DC=
12
AB,E为AB的中点.
(1)求证:△AED≌△EBC;
(2)观察图形,在不添加辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形(直接写出结果,不要求证明):
 

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知:如图,CD∥AB,∠A=40°,∠B=60°,那么∠1=
80
度,∠2=
60
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D、点E分别为AC和AB的中点,则线段DE的长为
 
cm,请对你所得到的结论加以证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

17、已知:如图,CE⊥AB,DF⊥AB,AF=BE,CE=DF.
求证:(1)∠A=∠B;(2)AC∥DB.

查看答案和解析>>

同步练习册答案