精英家教网 > 初中数学 > 题目详情
(2004•龙岩)为加强公民节约用水,减少污水排放的环保意识,某城市制定了以下用水收费标准(含城市污水处理费):每户每月用水未超过8m3时,按1.2元/m3收费;每户每月用水超过8m3时,其中的8m3仍按原标准收费,超过部分按1.9元/m3收费.设某户每月用水量为x(m3),应交水费为y(元).
(1)分别写出用水未超过8m3和超过8m3时,y与x之间的函数关系式;
(2)某用户五月份共交水费13.4元,问该用户五月份用水多少m3
【答案】分析:(1)未超过8立方米时,应缴纳的水费=1.2元/立方米×使用的水量.超过8立方米时,应缴纳的水费=1.9×(使用的水量-8立方米)+1.2×8.根据这两个等量关系可得出y与x的函数关系式;
(2)要先判断这13.4元是否超过了8立方米的用水量,然后根据情况选择(1)中的函数式进行求解.
解答:解:(1)当x≤8时,y=1.2x,
当x>8时,y=1.9x-5.6;
(2)∵8×1.2=9.6<13.4,
∴y=13.4应满足y=1.9x-5.6,
∴13.4=1.9x-5.6,解得x=10.
答:该用户五月份用水10m3
点评:一次函数的综合应用题常出现于销售、收费、行程等实际问题当中,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数式,再求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2004•龙岩)今年4月25日,我市举行龙岩冠豸山机场首航仪式,利用这一契机,推出“冠豸山绿色之旅”等多项旅游项目.“五•一”这天,对连城八家旅行社中部分游客的年龄(年龄取整数)进行了抽样统计,经整理后分成六组,并绘制成频率分布直方图(如图示).已知从左到右依次为1~6小组的频率分别是0.08、0.20、0.32、0.24、0.12、0.04,第1小组的频数为8,请结合图形回答下列问题:
(1)这次抽样的样本容量是
100
100

(2)样本中年龄的中位落在第
3
3
小组内;
(3)“五•一”这天,若到连城豸的游客约有5000人,请你用学过的统计知识去估计20.5)~50.5年龄段的游客约有
3800
3800
人.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•龙岩)如图,已知抛物线C:y=-x2+x+3与x轴交于点A、B两点,过定点的直线l:y=x-2(a≠0)交x轴于点Q.
(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;
(2)写出点A、B的坐标:A(______)、B(______)及点Q的坐标:Q(______)(用含a的代数式表示);并依点Q坐标的变化确定:当______时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;
(3)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得∠APB=90°?若存在,求出此时a的值;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年福建省龙岩市中考数学试卷(解析版) 题型:解答题

(2004•龙岩)如图,已知抛物线C:y=-x2+x+3与x轴交于点A、B两点,过定点的直线l:y=x-2(a≠0)交x轴于点Q.
(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;
(2)写出点A、B的坐标:A(______)、B(______)及点Q的坐标:Q(______)(用含a的代数式表示);并依点Q坐标的变化确定:当______时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;
(3)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得∠APB=90°?若存在,求出此时a的值;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年福建省龙岩市中考数学试卷(解析版) 题型:解答题

(2004•龙岩)为加强公民节约用水,减少污水排放的环保意识,某城市制定了以下用水收费标准(含城市污水处理费):每户每月用水未超过8m3时,按1.2元/m3收费;每户每月用水超过8m3时,其中的8m3仍按原标准收费,超过部分按1.9元/m3收费.设某户每月用水量为x(m3),应交水费为y(元).
(1)分别写出用水未超过8m3和超过8m3时,y与x之间的函数关系式;
(2)某用户五月份共交水费13.4元,问该用户五月份用水多少m3

查看答案和解析>>

同步练习册答案