【题目】如图,四边形ABCD中,∠ABC=∠BCD=90°,点E在BC边上,∠AED=90°
(1)求证:∠BAE=∠CED;(2)若AB+CD=DE,求证:AE+BE=CE
(3)在(2)的条件下,若△CDE与△ABE的面积的差为18,CD=6,求BE的长.
【答案】(1)见解析;(2)见解析;(3)3.
【解析】
(1)由∠AEB+∠CED=180°90°=90°,∠BAE+∠AEB=90°,即可得出结论;
(2)在ED上截取EF=AB,过点F作FG⊥DE交BC于G,连接DG,证出∠BAE=∠FEG,由ASA证得△ABE≌△EFG得出AE=EG,BE=FG,由AB+CD=DE,EF+DF=DE,得出DF=CD,由HL证得Rt△DFG≌Rt△DCG得出FG=CG,则BE=CG,即可得出结论;
(3)由△ABE≌△EFG,Rt△DFG≌Rt△DCG,得出S△ABE=S△EFG,S△DFG=S△DCG,则S△CDES△ABE=2S△CDG=18,得出S△CDG=9,则CGCD=9,即可得出结果.
(1)证明:∵∠AEB+∠CED=180°90°=90°,∠BAE+∠AEB=90°,
∴∠BAE=∠CED;
(2)证明:在ED上截取EF=AB,过点F作FG⊥DE交BC于G,连接DG,如图所示:
∵∠AEB+∠GEF=90°,∠BAE+∠AEB=90°,
∴∠BAE=∠FEG,
在△ABE和△EFG中,
,
∴△ABE≌△EFG(ASA),
∴AE=EG,BE=FG,
∵AB+CD=DE,EF+DF=DE,
∴DF=CD,
在Rt△DFG和Rt△DCG中,
,
∴Rt△DFG≌Rt△DCG(HL),
∴FG=CG,
∴BE=CG,
∴AE+BE=EG+CG=CE;
(3)解:∵△ABE≌△EFG,Rt△DFG≌Rt△DCG,
∴S△ABE=S△EFG,S△DFG=S△DCG,
∴S△CDES△ABE=2S△CDG=18,
∴S△CDG=9,
∴CGCD=9,即×CG×6=9,
∴CG=BE=3.
科目:初中数学 来源: 题型:
【题目】如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣8,点C在数轴上表示的数是10,若线段 AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的数度也向右匀速运动.
(1)运动t秒后,点B表示的数是 ;点C表示的数是 ;(用含有t的代数式表示)
(2)求运动多少秒后,BC=4(单位长度);
(3)P是线段AB上一点,当B点运动到线段CD上,且点P不在线段CD上时,是否存在关系式 BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是( )
A. (4,2) B. (2,4) C. (,3) D. (3,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:
(1)在坐标系内描出点A, B, C的位置.
(2)画出关于直线x=-1对称的,并写出各点坐标.
(3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉淇准备完成题目:化简:,发现系数“”印刷不清楚.
(1)他把“”猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);
(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点A,B,与轴交于点C。过点C作CD∥x轴,交抛物线的对称轴于点D,连结BD。已知点A坐标为(-1,0)。
(1)求该抛物线的解析式;
(2)求梯形COBD的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)完成下面的证明(在括号中填写推理理由)如图,已知,,求证:.
证明:因为,
所以(________),
所以________(________).
因为,
所以________(________).
所以(________).
(2)如图,、、三点在同一直线上,,,试判断与的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.
(1)设a=2,点B(4,2)在函数y1、y2的图象上.
①分别求函数y1、y2的表达式;
②直接写出使y1>y2>0成立的x的范围;
(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;
(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com