精英家教网 > 初中数学 > 题目详情
已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(-2,4),B(8,2)(如图所示),则能使y1>y2成立的x的取值范围是   
【答案】分析:先观察图象确定抛物线y1=ax2+bx+c和一次函数y2=kx+b(k≠0)的交点的横坐标,即可求出y1>y2时,x的取值范围.
解答:解:由图形可以看出:
抛物线y1=ax2+bx+c和一次函数y2=kx+b(k≠0)的交点横坐标分别为-2,8,
当y1>y2时,x的取值范围正好在两交点之外,即x<-2或x>8.
点评:此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知二次函数y1=x2-2x-1的图象和反比例函数y2=
kx
的图象都经过点(1,a).
(1)求a的值;
(2)试在下图所示的直角坐标系中,画出该二次函数及反比例函数的图象,并利用图象比较y1与y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-
32
).精英家教网
(1)求二次函数的解析式.
(2)在给定的直角坐标系中作出这个函数的图象,并观察图象,写出x为何值,y<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(-2,4),B(8,2),则能使y1<y2成立的x的取值范围是
-2<x<8
-2<x<8

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•吴江市模拟)如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于A(-1,2)、B(4,1)两点,则关于x的不等式ax2+bx+c>kx+m的解集是
x<-1或x>4
x<-1或x>4

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y1=ax2+bx-3的图象经过点A(2,-3),B(-1,0),与y轴交于点C,与x轴另一交点交于点D.
(1)求二次函数的解析式;
(2)求点C、点D的坐标;
(3)若一条直线y2,经过C、D两点,请直接写出y1>y2时,x的取值范围.

查看答案和解析>>

同步练习册答案