精英家教网 > 初中数学 > 题目详情

【题目】如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于

【答案】40
【解析】解:过点A作AM⊥x轴于点M,如图所示. 设OA=a,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=
∴AM=OAsin∠AOB= a,OM= = a,
∴点A的坐标为( a, a).
∵点A在反比例函数y= 的图象上,
a= a2=48,
解得:a=10,或a=﹣10(舍去).
∴AM=8,OM=6,OB=OA=10.
∵四边形OACB是菱形,点F在边BC上,
∴SAOF= S菱形OBCA= OBAM=40.
故答案是:40.

过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF= S菱形OBCA , 结合菱形的面积公式即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发 小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P“a级关联点.例如,点P(1,4)的“3级关联点Q(3×1+4,1+3×4),即Q(7,13).

(1)已知点A(﹣2,6)的级关联点是点A1,点B“2级关联点B1(3,3),求点A1和点B的坐标;

(2)已知点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,求M′的坐标;

(3)已知点C(﹣1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列函数中,满足y的值随x的值增大而增大的是(
A.y=﹣2x
B.y=3x﹣1
C.y=
D.y=x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将ADE折叠使点D恰好落在BC边上的点F,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.
(1)求证:△ABC是等边三角形;
(2)若∠PAC=90°,AB=2 ,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是 . (写出正确命题的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象与直线y=x+1相交于点A(﹣1,m)和点B(n,5).
(1)求该二次函数的关系式;
(2)在给定的平面直角坐标系中,画出这两个函数的大致图象;
(3)结合图象直接写出x2+bx+c>x+1时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE.
(1)求证:DE与⊙O相切.
(2)若tanC= ,DE=2,求AD的长.

查看答案和解析>>

同步练习册答案