精英家教网 > 初中数学 > 题目详情
点P为线段AB的黄金分割点(PA>PB),则关于PA、PB、AB的比例式是
 
分析:根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割即可得出关于PA、PB、AB的比例式.
解答:解:P是线段AB的黄金分割点,且PA>PB,
根据线段黄金分割的定义,
则有比例线段
PA
PB
=
AB
PA

故答案为:
PA
PB
=
AB
PA
点评:本题考查了黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.
(1)某研究小组在进行课题学习时,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.(如图2)精英家教网
问题.试在图3的梯形中画出至少五条黄金分割线,并说明理由.
(2)类似“黄金分割线”得“黄金分割面”定义:截面a将一个体积为V的图形分成体积为V精英家教网1、V2的两个图形,且
V1
V
=
V2
V1
,则称直线a为该图形的黄金分割面.
问题:如图4,长方体ABCD-EFGH中,T是线段AB上的黄金分割点,证明经过T点且平行于平面BCGF的截面QRST是长方体的黄金分割面.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.
(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果
s1
s
=
s2
s1
,那么称直线l为该图形的黄金分割线.
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图2所示,则精英家教网直线CD是△ABC的黄金分割线,你认为对吗?说说你的理由;
(2)请你说明:三角形的中线是否是该三角形的黄金分割线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果
AP
BP
=
BP
AB
,那么称点P为线段AB的黄金分割点,设
AP
BP
=
BP
AB
=k,则k就是黄金比,并且k≈0.618.
精英家教网
(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足
=
底+腰
≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:
 

(2)如图1,设AB=1,请你说明为什么k约为0.618;
(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果
S1
S2
=
S2
S
,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?请说明理由;
(4)图3中的△ABC的黄金分割线有几条?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.

(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.

查看答案和解析>>

同步练习册答案