【题目】如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,
(1)求BF与FC的长;
(2)求EC的长.
【答案】(1)AF= 10cm,FC=4cm;(2)EC=3cm.
【解析】整体分析:
由轴对称的性质得AD=AF,DE=EF,在Rt△ABF中,由勾股定理得BF,FC=BC-BF,在Rt△CEF中,设EC=x,用勾股定理列方程求解.
解:(1)∵四边形ABCD是长方形,
∴AD=BC=10cm,
∵折叠长方形一边AD,点D落在BC边的点F处,
∴AF=AD=10cm,
在Rt△ABF中,根据勾股定理得,BF==6cm,
所以FC=BC﹣BF=10﹣6=4cm;
(2)∵折叠长方形一边AD,点D落在BC边的点F处,
∴EF=DE,
设EC=x,则EF=DE=8﹣x,
在Rt△CEF中,根据勾股定理得,FC2+EC2=EF2,
即42+x2=(8﹣x)2,解得x=3,
即EC=3cm.
科目:初中数学 来源: 题型:
【题目】某区在实施居民用水管理前,随机调查了部分家庭(单位:户)去年的月均用水量(单位:t),并将调查数据进行整理,绘制出如下不完整的统计图表:
请解答以下问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?
(3)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕。
(1)试判断B'E与DC的位置关系并说明理由。
(2)如果∠C=130°,求∠AEB的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E、F分别是ABCD的边BC、AD上的点,且BE=DF.
(1)试判断四边形AECF的形状;
(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,E,F分别是边BC,CD边上的动点,且AE=AF,设△AEF的面积为y,EC的长为x.
(1)求y与x之间的函数表达式,并写出自变量x的取值范围.
(2)当x取何值时,△AEF的面积最大,最大面积是多少?
(3)在直角坐标系中画出y关于x的函数的图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点C在∠AOB的一边OA上,过点C的直线DE∥O B.做∠ACD的平分线CF,过点C画CF的垂线CG,如图所示.
(Ⅰ)若∠AOB=40°,求∠ACD及∠ECF的度数;
(Ⅱ)求证:CG平分∠OCD;
(Ⅲ)延长FC交OB于点H,用直尺和三角板过点O作OR⊥FH,垂足为R,过点O
作FH的平行线交ED于点Q.先补全图形,再证明∠COR=∠GCO,∠CQO=∠CHO.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小方格都是边长为1个单位长度的正方形,△ABC的顶点和点O均在网格图的格点上,将△ABC绕点O逆时针旋转90°,得到△A1B1C1 .
(1)请画出△A1B1C1;
(2)以点O为圆心, 为半径作⊙O,请判断直线AA1与⊙O的位置关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com