精英家教网 > 初中数学 > 题目详情
已知抛物线y=(k-1)x2+(2+4k)x+1-4k过点A(4,0).
(1)试确定抛物线的解析式及顶点B的坐标;
(2)在y轴上确定一点P,使线段AP+BP最短,求出P点的坐标;
(3)设M为线段AP的中点,试判断点B与以AP为直径的⊙M的位置关系,并说明理由.
【答案】分析:(1)把A点坐标代入抛物线可得出k值以及点B坐标.
(2)由题意可得点A关于y轴对称的坐标A′,易求解析式.
(3)本题要靠辅助线的帮助.过点B作BE⊥OA于E,得出E为OA的中点,求出AP的长度,则可判断.
解答:解:(1)所求抛物线的解析式为:y=-x2+3x=-(x-2)2+3.
顶点B的坐标为(2,3).

(2)∵y=-x2+3x,
∴y=0时,解得x=4或0,
∴点A的坐标是(4,0),
∴关于y轴的对称点A′的坐标为(-4,0).
则直线A'B与y轴的交点就是P点.
设直线A'B的解析式为y=x+2.
∴P的坐标为(0,2).

(3)过点B作BE⊥OA于E,则BE∥OP.
由抛物线的对称性可知,点E为OA的中点.
直线BE与AP的交点就是AP的中点M.
AP=2,⊙M的半径R=
BM=3-1=2<
∴点B在⊙M的内部.
点评:本题考查的是圆的相关知识以及二次函数的综合运用,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的精英家教网正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为
152

(1)求此抛物线的解析式;
(2)求直线AC和BC的方程;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-
140
x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E、F处要安装两盏警示灯,求这两盏灯的水平距离EF(精确到1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2(a>0)上有A、B两点,它们的横坐标分别为-1,2.如果△AOB(O是坐标原点)是直角三角形,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线经过点A(1,0)、B(2,-3)、C(0,4)三点.
(1)求此抛物线的解析式;
(2)如果点D在这条抛物线上,点D关于这条抛物线对称轴的对称点是点C,求点D的坐标.

查看答案和解析>>

同步练习册答案