分析 (1)①根据条件可补全图形,如图1①;②连接MF,如图1②,要证EF=HM,由于点M,N重合,只需证到EF=HN,只需证到四边形ENFH是矩形即可.
(2)连接FM,EF,如图2.易证△ANC是等边三角形,从而有AN=AC.进而可证到△AFN≌△AMC,则有AF=AM,从而得到△AMF是等边三角形,则有AF=FM,∠AMF=60°.进而可证到四边形FHEM是平行四边形,则有EH=FM,即AF=EH.
解答 解:(1)①补全图形,如图1①.
②连接MF,EF,如图1②.
∵AB=AC,∠BAC=60°,
∴△ABC是等边三角形,
∴CA=CB.
∵CE平分∠ACB,
∴CE⊥AB,即∠AEC=90°.
∵NF⊥CE,即∠FNC=90°,
∴∠AEC=∠FNC,
∴EH∥FN.
∵FH∥CE,
∴四边形ENFH是平行四边形.
∵∠AEC=90°,
∴平行四边形ENFH是矩形.
∴EF=HN.
∵点M,N重合,
∴EF=HM.
故答案为:EF=HM.
(2)连接FM,如图2.
∵AD,CE分别平分∠BAC和∠ACB,且∠BAC=120°,
∴∠BAD=∠CAD=60°,∠ACE=∠BCE.
∵AB=AC,∴AD⊥BC.
∵NG⊥EC,
∴∠MDC=∠NGM=90°,
∴∠BCE+∠DMC=90°,∠MNG+∠DMC=90°.
∴∠BCE=∠MNG.
∴∠ACE=∠MNG.
∵NA=NC,∠NAC=60°,
∴△ANC是等边三角形,
∴AN=AC.
在△AFN和△AMC中,
$\left\{\begin{array}{l}{∠ANF=∠ACM}\\{AN=AC}\\{∠NAF=∠CAM}\end{array}\right.$,
∴△AFN≌△AMC(ASA),
∴AF=AM.
∴△AMF是等边三角形.
∴AF=FM,∠AMF=60°.
∴∠AMF=∠BAD.
∴FM∥AE.
∵FH∥CE,
∴四边形FHEM是平行四边形.
∴EH=FM.
∴AF=EH.
点评 本题考查了黄金三角形、全等三角形的判定与性质、等边三角形的判定与性质、矩形的判定与性质、平行四边形的判定与性质、垂直平分线的性质、平行线分线段成比例等知识,综合性比较强,有一定的难度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com