分析 (1)由图形翻折变换的性质可知,AD=AF=10,在Rt△ABF中利用勾股定理即可求解BF,再由BC=12厘米可得出FC的长度;
(2)将CE的长设为x,得出DE=10-x=EF,在Rt△CEF中,根据勾股定理列出方程求解即可.
解答 解:(1)∵△ADE折叠后的图形是△AFE,
∴AD=AF,∠D=∠AFE,DE=EF.
∵AD=BC=10cm,
∴AF=AD=10cm.
又∵AB=8cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2
∴82+BF2=102,
∴BF=6cm,
∴FC=BC-BF=10-6=4cm.
(2)设EC的长为xcm,则DE=(8-x)cm.
在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,
∴42+x2=(8-x)2,
即16+x2=64-16x+x2,
化简,得16x=48,
∴x=3,
故EC的长为3cm.
点评 本题主要考查了勾股定理的应用,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
科目:初中数学 来源: 题型:选择题
A. | x<0 | B. | x>0 | C. | x>$\frac{1}{3}$ | D. | x<$\frac{1}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com