分析 首先根据平行线的性质可得∠A=∠C,∠AFB=∠DEC,再根据等式的性质可得AF=CE,然后再利用ASA定理判定△ABF与△CDE全等.
解答 解:△ABF与△CDE全等,
∵AB∥CD,
∴∠A=∠C,
∵BF∥DE,
∴∠AFB=∠DEC,
∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
在△ABF与△CDE中$\left\{\begin{array}{l}{∠A=∠C}\\{AF=CE}\\{∠DEC=∠BFA}\end{array}\right.$,
∴△ABF≌△CDE(ASA).
点评 此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com