精英家教网 > 初中数学 > 题目详情
已知:如图,AB=DE,CD=FA,∠A=∠D,∠AFC=∠DCF,则BC=EF.你能说出它们相等的理由吗?
分析:首先连接CE、BF,然后根据条件可证明△ABF≌△DEC,再根据全等三角形的性质可得∠3=∠4,BF=EC,然后证明△BCF≌△EFC可得BC=EF.
解答:解:连接CE、BF,如图.
在△ABF和△DEC中
AB=DE
∠A=∠D
FA=CD

∴△ABF≌△DEC(SAS).
∴∠3=∠4,BF=EC.
∵∠AFC=∠DCF,
∴∠AFC-∠3=∠DCF-∠4.
即∠1=∠2.
在△BCF和△EFC中
BF=EC
∠1=∠2
FC=CF

∴△BCF≌△EFC(SAS).
∴BC=EF.
点评:此题主要考查了全等三角形的判定与性质,关键是正确画出辅助线,掌握全等三角形的判定与性质定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB,CD相交于点O,且OA•OD=OB•OC,求证:AC∥DB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
(1)求证:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、已知,如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB=AC,DB=DC,求证:∠B=∠C.

查看答案和解析>>

同步练习册答案