精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点.
(1)DF与⊙O的位置关系是______(填“相切”或“相交”).
(2)若AE=14,BC=12,BF的长为______.

【答案】分析:(1)连接OD、AD,根据已知及圆内接四边形的性质,得OD是半径且OD⊥DF,从而得到DF是⊙O的切线.
(2)设BF=x,BE=2BF=2x,根据切割线定理即可求得BF的长.
解答:解:(1)DF与⊙O的位置关系是相切.
证明:连接OD,AD,
∵AC是直径,
∴AD⊥BC,
∵AB=AC,
∴∠B=∠C,∠BAD=∠DAC;
∵∠BED是圆内接四边形ACDE的外角,
∴∠C=∠BED,
∴∠B=∠BED,
即DE=DB;
∵点F是BE的中点,DF⊥AB且OA和OD是半径,
∴∠DAC=∠BAD=∠ODA,
∴OD⊥DF,DF是⊙O的切线;

(2)设BF=x,BE=2BF=2x;
∵BD=CD=BC=6,
∵BE•AB=BD•BC,
∴2x•(2x+14)=6×12,
∴x2+7x-18=0,
∴x1=2,x2=-9(不合题意,舍去)
∴BF的长为2.
点评:本题利用了等腰三角形的性质,直径对的圆周角是直角,圆内接四边形的性质,切线的定义,切割线定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案