精英家教网 > 初中数学 > 题目详情
5.【发现】:如图1,在正三角形ABC中,在AB,AC边上分别取点M,N,BM=AN,连接BN,CM,相交于点O,求∠α
易得:△ABN≌△BCN,则∠1=∠2
∵∠α是△BOC的外角,∴∠α=∠2+∠3
∴∠α=∠1+∠3=∠ABC=60°

【推广】:在正n边形中,对相邻的两边实施同样的操作…
(1)如图2,在正四边形ABCD中,在AB,AD边上分别取点M,N,连接BN,CM,可确定∠α=90°;
(2)如图3,在正五边形ABCDE中,在AB,AD边上分别取点M,N,连接BN,CM,可确定∠α=108°;
(3)判断:∠α可以等于160°吗?如果可以,求出对应的边数n,若不可以,说明理由.

分析 (1)根据正方形的性质得到AB=BC,∠A=∠CBM=90°,根据全等三角形的性质得到∠1=∠2,根据三角形的外角的性质即可得到结论;
(2))由于四边形ABCD是正五边形,得到AB=BC,∠A=∠CBM=108°,根据全等三角形的性质得到∠1=∠2,根据三角形的外角的性质即可得到结论;
(3)根据(1)、(2)的结论即可得到结果.

解答 解:(1)∵四边形ABCD是正方形,
∴AB=BC,∠A=∠CBM=90°,
在△ABN与△BCM中,$\left\{\begin{array}{l}{AB=BC}\\{∠A=∠CBM}\\{AN=BM}\end{array}\right.$,
∴△ABN≌△BCM,
∴∠1=∠2,
∵∠α是△BOC的外角,
∴∠α=∠2+∠3
∴∠α=∠1+∠3=∠ABC=90°;
故答案为:90;
(2))∵四边形ABCD是正五边形,
∴AB=BC,∠A=∠CBM=108°,
在△ABN与△BCM中,$\left\{\begin{array}{l}{AB=BC}\\{∠A=∠CBM}\\{AN=BM}\end{array}\right.$,
∴△ABN≌△BCM,
∴∠1=∠2,
∵∠α是△BOC的外角,
∴∠α=∠2+∠3,
∴∠α=∠1+∠3=∠ABC=108°;
故答案为:108;
(3)∠α可以等于160°,
理由:由于上述操作发现的结论可知,正n边形中的∠α=正n边形的内角的度数,
假设存在正n边形使得∠α=160°,则(n-2)•180°=160°n,
解得:n=18,
∴存在正n边形使得∠α=160°,
此时,该正n边形为正十八边形.

点评 本题考查了正多边形的性质,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年贵州省七年级下学期第一次月考数学试卷(解析版) 题型:单选题

的算术平方根是( )

A. ±2 B. 2 C. ±4 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在△ABC中,AB=AC,∠ABC=90°,D为AC中点,点P是线段AD上的一点,点P与点A、点D不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接A1B1、BB1
(1)如图①,当0°<α<90°,在α角变化过程中,请证明∠PAA1=∠PBB2
(2)如图②,直线AA1与直线PB、直线BB1分别交于点E,F.设∠ABP=β,当90°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图③,当α=90°时,点E、F与点B重合.直线A1B与直线PB相交于点M,直线BB与AC相交于点Q.若AB=$\sqrt{2}$,设AP=x,求y关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.
分组 次数x(个) 人数
 A 0≤x<120 24
 B 120≤x<130 72
 C 130≤x<140 
 D x≥140
根据以上信息,解答下列问题:
(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为72人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为12%;
(2)本次共调查了200名学生,其中跳绳次数在130≤x<140范围内的人数为59人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为22.5%;
(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.一个不透明的口袋里装有红、黑、绿三种颜色的乒乓球(除颜色外其余都相同),其中红球有2个,黑球有1个,绿球有3个,第一次任意摸出一个球(不放回),第二次再摸出一个球,则两次摸到的都是红球的概率为$\frac{1}{15}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.不等式组$\left\{\begin{array}{l}{4x+1≥x-2}\\{2-\frac{1}{3}x>1}\end{array}\right.$的解集在数轴上表示正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.
(1)如图1,若DF⊥AC,垂足为F,AB=8,求BE的长;
(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=$\frac{1}{2}$AB;
(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,作DN⊥AC于点N,若DN=FN,AB=8,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算.
(1)(2a+3b)2
(2)(27x3-18x2+3x)÷(-3x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.第三届世界互联网大会(3rd World Internet Conference),是由中华人民共和国倡导并举办的互联网盛会,于2016年11月16日至18日在浙江乌镇举办.某初中学校为了了解本校学生对本次互联网大会的关注程度(关注程度分为:A.特别关注;B.一般关注;C.偶尔关注;D.不关注),随机抽取了部分学生进行调查,并将结果绘制成频数折线统计图1和扇形统计图2(不完整)请根据图中信息回答问题.
(1)此次抽样调查中,共调查了多少名学生?
(2)求出图2中扇形B所对的圆心角度数,并将图1补充完整.
(3)在这次调查中,九(1)班共有甲、乙、丙、丁四人“特别关注”本届互联网大会,现准备从四人中随机抽取两人进行交流,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

同步练习册答案