精英家教网 > 初中数学 > 题目详情
18.如图,直线l:y=-x+1与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限,∠POQ=135°.
(1)求△AOB的周长;
(2)设AQ=t>0,试用含t的代数式表示点P的坐标;
(3)当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记tan∠AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件:
①6a+3b+2c=0;
②当m≤x≤m+2时,函数y的最大值等于$\frac{2}{m}$,求二次项系数a的值.

分析 (1)先求出A、B坐标,再求出OB、OA、AB即可解决问题.
(2)由△PBO∽△OAQ,得$\frac{PB}{OA}$=$\frac{OB}{AQ}$,求出PB,再根据等腰直角三角形性质可以求得点P坐标.
(3)先求出m的值,分①a>0,②a<0,两种情形,利用二次函数性质分别求解即可.

解答 解:(1)在函数y=-x+1中,令x=0,得y=1,
∴B(0,1),
令y=0,得x=1,
∴A(1,0),
则OA=OB=1,AB=$\sqrt{2}$,
∴△AOB周长为1+1+$\sqrt{2}$=2+$\sqrt{2}$.
(2)∵OA=OB,
∴∠ABO=∠BAO=45°,
∴∠PBO=∠QAO=135°,
设∠POB=x,则∠OPB=∠AOQ=135°-x-90°=45°-x,
∴△PBO∽△OAQ,
∴$\frac{PB}{OA}$=$\frac{OB}{AQ}$,
∴PB=$\frac{OA•OB}{AQ}$=$\frac{1}{t}$,
过点P作PH⊥OB于H点,

则△PHB为等腰直角三角形,
∵PB=$\frac{1}{t}$,
∴PH=HB=$\frac{\sqrt{2}}{2t}$,
∴P(-$\frac{\sqrt{2}}{2t}$,1+$\frac{\sqrt{2}}{2t}$).
(3)由(2)可知△PBO∽△OAQ,若它们的周长相等,则相似比为1,即全等,
∴PB=OA,
∴$\frac{1}{t}$=1,
∴t=1,
同理可得Q(1+$\frac{\sqrt{2}}{2t}$,-$\frac{\sqrt{2}}{2t}$),
∴m=$\frac{\frac{\sqrt{2}}{2t}}{1+\frac{\sqrt{2}}{2t}}$=$\sqrt{2}$-1,
∵抛物线经过点A,
∴a+b+c=0,
又∵6a+3b+2c=0,
∴b=-4a,c=3a,
对称轴x=2,取值范围$\sqrt{2}$-1≤x$≤\sqrt{2}$+1,
①若a>0,则开口向上,
由题意x=$\sqrt{2}$-1时取得最大值$\frac{2}{m}$=2$\sqrt{2}$+2,
即($\sqrt{2}$-1)2a+($\sqrt{2}$-1)b+c=2$\sqrt{2}$+2,
解得a=$\frac{11+8\sqrt{2}}{7}$.
②若a<0,则开口向下,
由题意x=2时取得最大值2$\sqrt{2}$+2,
即4a+2b+c=2$\sqrt{2}$+2,
解得a=-2$\sqrt{2}$-2.
综上所述所求a的值为$\frac{11+8\sqrt{2}}{7}$或-2$\sqrt{2}$-2.

点评 本题考查二次函数综合题、相似三角形的判定和性质、等腰直角三角形的性质、函数最值问题等知识,解题的关键是灵活应用这些知识解决问题,学会分类讨论,考虑问题要全面,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.表为小洁打算在某电信公司购买一支MAT手机与搭配一个门号的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?(  )
甲方案乙方案
门号的月租费(元)400600
MAT手机价格(元)1500013000
注意事项:以上方案两年内不可变更月租费
A.500B.516C.517D.600

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.规定:logab(a>0,a≠1,b>0)表示a,b之间的一种运算.
现有如下的运算法则:logaan=n.logNM=$\frac{lo{g}_{n}M}{lo{g}_{n}N}$(a>0,a≠1,N>0,N≠1,M>0).
例如:log223=3,log25=$\frac{lo{g}_{10}5}{lo{g}_{10}2}$,则log1001000=$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知?ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作?ABCD关于直线AD的对称图形AB1C1D
(1)若m=3,试求四边形CC1B1B面积S的最大值;
(2)若点B1恰好落在y轴上,试求$\frac{n}{m}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a<6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.
(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30元;
(2)求y1、y2与x的函数表达式;
(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.数学活动-旋转变换
(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;
(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.
(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;
(Ⅱ)连接A′B,求线段A′B的长度;
(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.二次函数y=x2+2x-3的开口方向、顶点坐标分别是(  )
A.开口向上,顶点坐标为(-1,-4)B.开口向下,顶点坐标为(1,4)
C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(-1,-4)

查看答案和解析>>

同步练习册答案