精英家教网 > 初中数学 > 题目详情

(1)已知二次函数,请你化成的形式,并在直角坐标系中画出的图象;
(2)如果是(1)中图象上的两点,且,请直接写出的大小关系;
(3)利用(1)中的图象表示出方程的根来,要求保留画图痕迹,说明结果.

(1),图象见解析;(2);(3)详见解析.

解析试题分析:(1)首先由“”想到应化为,此时比原来多了“1”,因此再减去1,据此将原函数解析式变形;画函数图象应确定几个基本点后,描点连线即可;(2)由图象可直接判断,得出结果;(3)由解析式可知将原图象向上平移两个单位即得到新的函数图象,其与x轴的交点即为所求的根.
试题解析:
解:(1).   画图象,如图所示.

(2)
(3)如图所示,将抛物线向上平移两个单位后得到抛物线,抛物线与x轴交于点A、B,则A、B两点的横坐标即为方程的根.
考点:二次函数的综合运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.

(1)求抛物线与x轴的另一个交点B的坐标;
(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.若以AB为一底边的梯形ABCD的面积为9.
求此抛物线的解析式,并指出顶点E的坐标;
(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.
①当t为   秒时,△PAD的周长最小?当t为     秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)
②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.

(1)请你直接写出“蛋圆”抛物线部分的解析式          ,自变量的取值范围是          
(2)请你求出过点C的“蛋圆”切线与x轴的交点坐标;
(3)求经过点D的“蛋圆”切线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,若篮球运行的轨迹为抛物线,篮圈中心距离地面3米.

(1)建立如图的平面直角坐标系,求抛物线的解析式;
(2)问此球能否投中?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为米,面积为平方米.(注:的近似值取3)

(1)求出的函数关系式,并写出自变量的取值范围;
(2)当半径为何值时,扇形花坛的面积最大,并求面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

二次函数的图象经过点
(1)求此二次函数的关系式;
(2)求此二次函数图象的顶点坐标;
(3)填空:把二次函数的图象沿坐标轴方向最少平移  个单位,使得该图象的顶点在原点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).

(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.

(1)求点A的坐标;
(2)若△OBC是等腰三角形,求此抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线上有一点M(x0)位于轴下方.
(1)求证:此抛物线与x轴交于两点;
(2)设此抛物线与轴的交点为A(,0),B(,0),且<,求证:<<

查看答案和解析>>

同步练习册答案