精英家教网 > 初中数学 > 题目详情
13.计算:($\frac{1}{2}$)-2+(π-3.14)0-|2-tan60°|-$\frac{1}{2}\sqrt{12}$.

分析 首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可.

解答 解:($\frac{1}{2}$)-2+(π-3.14)0-|2-tan60°|-$\frac{1}{2}\sqrt{12}$
=4+1-2+$\sqrt{3}$-$\frac{1}{2}$×2$\sqrt{3}$
=3+$\sqrt{3}$-$\sqrt{3}$
=3

点评 此题主要考查了实数的运算,零指数幂、负整数指数幂以及特殊角的三角函数值的求法,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知抛物线y=a(x+3)(x-1)交x轴于点A,B,顶点E的纵坐标为-4,P是抛物线上的一个动点(不与点A、B重合).

(1)求a的值;
(2)请在图1中探究:当∠PAB=45°时,求点P的坐标;
(3)如图2,作射线AP,BP,分别交抛物线的对称轴于点D、F.问:当点P运动时,CD+CF是否为定值?若存在,试求出这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为(  )
A.-3≤x<4B.x<4C.x≥-3D.空集

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算下列各式的值:
(1)$\sqrt{{{(-5)}^2}}-{(\sqrt{3})^2}+\root{3}{27}$
(2)$\sqrt{5}({\sqrt{5}-\frac{1}{{\sqrt{5}}}})$
(3)$2(2\sqrt{2}-\sqrt{3})+3\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,某超市从一楼到二楼的电梯AB的长为18米,电梯每级的水平级宽是0.3米.竖直级高是$\frac{\sqrt{3}}{10}$米.
(1)求该电梯的坡角∠BAC的度数.
(2)若电梯以每秒上升2级的速度运行,求小明跨上电梯从一楼上升到二楼需要的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为(  )
A.(1+40%)×30%xB.(1+40%)(1-30%)xC.$\frac{x}{(1+40%)×30%}$D.$\frac{x}{(1+40%)(1-30%)}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图甲所示,是小亮设计的一种智力拼图玩具的一部分,已知AB∥CD,∠B=30°,∠BEC=62°,求∠C的度数.
(1)填写根据:过点E作EF∥AB,如图甲所示,
∵AB∥DC,EF∥AB,
∴EF∥DC(两条直线都与第三条直线平行,那么这两条直线平行)
∴∠B=∠BEF(两直线平行,内错角相等)
∠C=∠CEF(两直线平行,内错角相等)
∴∠B+∠C=∠BEF+∠CEF
即∠B+∠C=∠BEC
∴∠C=∠BEC-∠B=62°-30°=32°
(2)方法迁移:如图乙,已知AE∥CD,若∠DCB=135°,∠ABC=72°,试求∠BAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在图1--图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM=$\frac{1}{3}$AD,点N是折线AB-BC上的一个动点.

(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为$\sqrt{13}$.
(2)当点N在AB边上时,将△AMN沿MN翻折得到
△A′MN,如图2,
①若点A′落在AB边上,则线段AN的长度为1;
②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;
③当点A′落在对角线BD上时,如图4,求$\frac{A′B}{A′N}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2$\sqrt{2}$=(1+$\sqrt{2}$)2,善于思考的小明进行了以下探索:
设a+b$\sqrt{2}$=(m+n$\sqrt{2}$)2(其中a、b、m、n均为整数),则有a+b$\sqrt{2}$=m2+2n2+2mn$\sqrt{2}$,∴a=m2+2n2,b=2mn,这样小明就找到了一种把部分a+b$\sqrt{2}$的式子化为平方式的方法.
请我仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b$\sqrt{3}$=(m+n$\sqrt{3}$)2,用含m、n的式子分别表示a、b,得a=m2+3n2,b=2mn.
(2)若a+4$\sqrt{3}$=(m+n$\sqrt{3}$)2,且a、m、n均为正整数,求a的值.

查看答案和解析>>

同步练习册答案