精英家教网 > 初中数学 > 题目详情
如图,BC为半圆的直径,O为圆心,D为AC的中点,四边形ABCD的对角线AC、BD相交于点E.
(1)△ABE与△DBC相似吗?请说明理由;
(2)若BC=5,CD=,求sin∠AEB的值;
(3)在(2)的条件下求弦AB的长.

【答案】分析:(1)由BC为半圆的直径,可得∠BAC=∠BDC=90°,又由∠ABD=∠CBD,根据有两角对应相等的三角形相似,即可证得)△ABE与△DBC相似;
(2)由△ABE∽△DBC,可得∠AEB=∠DCB,则由sin∠AEB=sin∠DCB即可求得sin∠AEB的值;
(3)先判断△DCE∽△DBC,由相似三角形的对应边成比例,即可求得弦AB的长.
解答:解:(1)∵BC为半圆的直径,
∴∠BAC=∠BDC=90°,
∵∠ABD=∠CBD,
∴△ABE∽△DBC;

(2)∵△ABE∽△DBC,
∴∠AEB=∠DCB,
∵∠BDC=90°,BC=5,CD=
∴BD=
∴sin∠AEB=sin∠DCB=

(3)∵D为AC的中点,
∴∠ABD=∠CBD,
∵∠ABD=∠ACD,
∴∠DCE=∠DBC,
∵∠CDE=∠DCB,
∴△DCE∽△DBC,

∴DE=
∴BE=BD-DE=
∴AB=BE•sin∠AEB==3.
点评:此题考查了相似三角形的判定与性质,圆周角的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直精英家教网道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分
AB
的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•咸丰县二模)如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC、BC为直经作半圆,面积分别记为S1、S2,则S1+S2的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(12分)如图所示,一内壁光滑的细管弯成半径为R=0.4 m的半圆形轨道CD,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆轨道在C点连接完好.置于水平轨道上的弹簧左端与竖直墙壁相连,B处为弹簧的自然状态.将一个质量为m=0.8 kg的小球放在弹簧的右侧后,用力向左侧推小球而压缩弹簧至A处,然后将小球由静止释放,小球运动到C处后对轨道的压力为F1=58 N.水平轨道以B处为界,左侧AB段长为x=0.3 m,与小球的动摩擦因数为μ=0.5,右侧BC段光滑.g=10 m/s2,求:

(1)弹簧在压缩时所储存的弹性势能.
(2)小球运动到轨道最高处D点时对轨道的压力.

查看答案和解析>>

科目:初中数学 来源:2012年湖北省恩施州咸丰县中考数学二模试卷(解析版) 题型:选择题

如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC、BC为直经作半圆,面积分别记为S1、S2,则S1+S2的值等于( )

A.8πB
B.16π
C.25π
D.12.5π

查看答案和解析>>

科目:初中数学 来源:2002年山东省潍坊市中考数学试卷(解析版) 题型:解答题

(2002•潍坊)如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

同步练习册答案