精英家教网 > 初中数学 > 题目详情
在直角坐标系中,O为坐标原点,点A的坐标是(1,1),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是(  )
A、(
2
,0)
B、(1,0)
C、(-
2
,0)
D、(-1,0)
分析:利用等腰三角形的定义和性质,以及两点之间的距离公式做题.
解答:解:①若AP=OP,设P点坐标为(x,0),则有
(x-0)2=(x-1)2+(0-1)2
∴x=1,即P点坐标是(1,0)
②OA=AP,设P点坐标为(x,0),则有
(1-0)2+(1-0)2=(x-1)2+(0-1)2
∴x1=0(不合题意,舍去),x2=2,
∴P点坐标是(2,0).
③OA=OP,设P点坐标是(x,0),则有
(x-0)2=(1-0)2+(1-0)2
∴x2=2,
∴x=±
2

∴P点坐标是(
2
,0)或(-
2
,0)
∴P点坐标不会是D(-1,0).
故选D.
点评:有两边相等的三角形是等腰三角形,以及两点之间的距离公式L=
(x1-x2)2+(y1-y2)2
的利用.要分情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△精英家教网OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,若设AC=x,请用x表示线段AD的长.
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时直线EF∥直线BO?这时⊙F和直线BO相切的位置关系如何?请给予说明.
(4)G为CD与⊙F的交点,H为直线DF上的一个动点,连接HG、HC,求HG+HC的最小值,并将此最小值用x表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、在直角坐标系中,O为坐标原点,已知点A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t.
(1)求tan∠FOB的值;
(2)用含t的代数式表示△OAB的面积S;
(3)是否存在点B,使以B,E,F为顶点的三角形与△OFE相似?若存在,请求出所有满足要求的B点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,矩形AOBC在直角坐标系中,O为原点,A在x轴上,B在y轴上,直线AB的函数关系式为y=-
43
x+8
,M是OB上的一点,若将梯形AMBC沿AM折叠,点B恰好落在x轴上的精英家教网点B′处,C的对应点为C′.
(1)求出B′点和M点的坐标;
(2)求直线A C′的函数关系式;
(3)设一动点P从A点出发,以每秒1个单位速度沿射线AB方向运动,过P作PQ⊥AB,交射线AM于Q;
①求运动t秒时,Q点的坐标;(用含t的代数式表示)
②以Q为圆心,以PQ的长为半径作圆,当t为何值时,⊙Q与y轴相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,O为坐标原点,△ABO是正三角形,若点B的坐标是(-2,0),则点A的坐标是
(-1,
3
),(-1,-
3
)
(-1,
3
),(-1,-
3
)

查看答案和解析>>

同步练习册答案