分析 根据等边三角形的性质得出∠CAD=30°,再利用等式的性质进行解答即可.
解答 解:∵在等边三角形ABC中,
∴AB=AC(等边三角形的意义),AD⊥BC(已知),
∴∠CAD=$\frac{1}{2}$∠BAC(等腰三角形三线合一),
∵∠BAC=60°(等边三角形的性质),
∴∠CAD=30°(等量代换),
∵AD=AC(已知),
∴∠ACD=∠ADC(等边对等角),
∵在△ACD中,∠ACD+∠ADC+∠CAD=180°(三角形的内角和等于180度),
∴∠ACD=75°(等式的性质),
∵在△ACE中,∠EAC+∠ACE+∠E=180°(三角形的内角和等于180度),
∴∠E=45°(等式的性质).
点评 此题考查等边三角形的性质,关键是根据等边三角形的三边相等和三线合一的性质分析.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | AB=BE | B. | BE⊥DC | C. | ∠ADB=90° | D. | CE⊥DE |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com