精英家教网 > 初中数学 > 题目详情
4.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)

分析 过C点作CD⊥AB于D,根据三角形外角的性质得出∠CBD=∠CAB+∠ACB,故可得出∠ACB=30°,BC=AB=10.在Rt△BCD中根据sin60°=$\frac{CD}{BC}$即可得出CD的长.

解答 解:过C点作CD⊥AB于D,
∵∠CBD=∠CAB+∠ACB,
∴∠ACB=30°,
∴∠ACB=∠CAB,
∴BC=AB=10.
在Rt△BCD中,
sin60°=$\frac{CD}{BC}$,
∴CD=10×$\frac{\sqrt{3}}{2}$=5$\sqrt{3}$(m).
因此C点离地面的高度为5$\sqrt{3}$m.

点评 本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,则这两张恰好能拼成原来的一幅画的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,直角△ABC的直角顶点C,另一顶点A及斜边AB的中点D都在⊙O上,已知:AC=6,BC=8,则⊙O的半径为$\frac{25}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.阅读与证明:请阅读以下材料,并完成相应的任务.
任务:请根据以上材料,证明以下结论:
传说古希腊毕达哥拉斯(Pythagonas,约公元570年-约公元前500年)学派的数学家经常在沙滩上研究数学问题.他们在沙滩上画点或用小石子来表示数,比如,他们研究过1、3、6,10…由于这些数可以用图中所示的三角形点阵表示,他们就将其称为三角形数,第n个三角形数可以用$\frac{n(n+1)}{2}$(n≥1)表示.
任务:请根据以上材料,证明以下结论:

(1)任意一个三角形数乘8再加1是一个完全平方数;
(2)连续两个三角形数的和是一个完全平方数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)解方程:$\frac{1-x}{x-2}$=$\frac{1}{2-x}$-2;
(2)计算:$\frac{a-2}{{a}^{2}-1}$÷($\frac{1}{a-1}$-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.无锡某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;
(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)a-(2b-a)
(2)$(-12)-(-\frac{6}{5})+(-8)-\frac{7}{10}$
(3)$[{(-5)^2}-(-15)]-(\frac{15}{7}-\frac{13}{4})×56$
(4)-3(2x2-xy)+(-4)(x2+xy-6)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B、C不重合),且DE∥AC,DF∥AB,则四边形DEAF的周长是16.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.手工课上,小明将一个边长为4cm的正方形铁丝框,变形成为如图所示一个扇形框,周长不变,且扇形框半径等于正方形的边长,则该扇形的面积大小为16cm2

查看答案和解析>>

同步练习册答案