精英家教网 > 初中数学 > 题目详情
如图①所示,直线l1:y=3x+3与x轴交于B点,与直线l2交于y轴上一点A,且l2与x轴的交点为C(1,0).
(1)求证:∠ABC=∠ACB;
(2)如图②所示,过x轴上一点D(-3,0)作DE⊥AC于E,DE交y轴于F点,交AB于G点,求G点的坐标.
(3)如图③所示,将△ABC沿x轴向左平移,AC边与y轴交于一点P(P不同于A、C两点),过P点作一直线与AB的延长线交于Q点,与x轴交于M点,且CP=BQ,在△ABC平移的过程中,线段OM的长度是否发生变化?若不变,请求出它的长度;若变化,确定其变化范围.
分析:(1)先求出点B的坐标,然后根据点B、点C的坐标求出OB=OC,再根据线段垂直平分线上的点到线段两端点的距离相等得到AB=AC,然后根据等边对等角的性质即可证明;
(2)根据等角的余角相等求出∠FDO=∠BAO,然后利用“角边角”证明△DOF和△AOB全等,根据全等三角形对应边相等可得OF=OB,从而求出点F的坐标,再根据待定系数法求直线解析式求出直线DF的解析式,与直线l1的解析式联立求解即可得到点G的坐标;
(3)过点P作PN∥AB交BC于点N,根据平行线的性质可得∠MPN=∠Q,然后证明PN=BQ,再利用“角角边”证明△QBM和△PNM全等,根据全等三角形对应边相等可得MN=BM,再根据等腰三角形三线合一的性质可得ON=OC,从而证明OM=
1
2
BC,是定值.
解答:证明:(1)对于y=3x+3,令y=0,得3x+3=0,x=-1,
∴B(-1,0).
∵C(1,0),
∴OB=OC,
∴AO垂直平分BC,
∴AB=AC,
∴∠ABC=∠ACB;

解:(2)∵AO⊥BC,DE⊥AC,
∴∠1+∠C=∠2+∠C=90°,
∴∠1=∠2.
∵AB=AC,
∴AO平分∠BAC,
∴∠2=∠3,
∴∠1=∠3.
对于y=3x+3,当x=0时,y=3,
∴A(0,3),
又∵D(-3,0),
∴DO=AO.
∵∠AOB=∠DOF=90°,
∴△DOF≌△AOB(ASA),
∴OF=OB,
∴F(0,1).
设直线DE的解析式为y=kx+b,
-3k+b=0
b=1

解得
k=
1
3
b=1

∴y=
1
3
x+1,
联立
y=
1
3
x+1
y=3x+3

解得
x=-
3
4
y=
3
4

所以,点G(-
3
4
3
4
);

解:(3)OM的长度不会发生变化,过P点作PN∥AB交BC于N点,
则∠1=∠Q,∠ABC=∠PNC,
∵∠ABC=∠ACB,
∴∠PNC=∠PCB,
∴PN=PC,
∵CP=BQ,
∴PN=BQ,
∵∠2=∠3,
∴△QBM≌△PNM(AAS),
∴MN=BM.
∵PC=PN,PO⊥CN,
∴ON=OC,
∵BM+MN+ON+OC=BC,
∴OM=MN+ON=
1
2
BC=1.
点评:本题综合考查了一次函数,待定系数法求直线解析式,两直线的交点的求解,全等三角形的判定与性质,以及等角对等边,等边对等角的性质,综合性较强,关系比较复杂,但难度不大,只要仔细分析,认真求解,便不难解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,矩形AOBP的面积为6,反比例函数y=
kx
的图象经过点P,那么k的值为
 
;直线l1:y=k1x+b与直线l2:y=k2x在同一精英家教网平面直角坐标系中的图象如图2所示,则关于x的不等式k1x+b>k2x的解为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知如图所示,直线L1,L2相交于A点,请根据图象写出以交点坐标为解的二元一次方程组,并求出它的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海淀区一模)问题:如图1,a、b、c、d是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形ABCD,使它的顶点A、B、C、D分别在直线a、b、d、c上,并计算它的边长.

小明的思考过程:
他利用图1中的等距平行线构造了3×3的正方形网格,得到了辅助正方形EFGH,如图2所示,再分别找到它的四条边的三等分点A、B、C、D,就可以画出一个满足题目要求的正方形.
请回答:图2中正方形ABCD的边长为
5
5

请参考小明的方法,解决下列问题:
(1)请在图3的菱形网格(最小的菱形有一个内角为60°,边长为1)中,画出一个等边△ABC,使它的顶点A、B、C落在格点上,且分别在直线a、b、c上;
(3)如图4,l1、l2、l3是同一平面内的三条平行线,l1、l2之间的距离是
21
5
,l2、l3之间的距离是
21
10
,等边△ABC的三个顶点分别在l1、l2、l3上,直接写出△ABC的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线l1与l2,l3相交,构成的八个角中,已知∠1=∠8,则与∠8互补的角有(  )

查看答案和解析>>

同步练习册答案