精英家教网 > 初中数学 > 题目详情

将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为______.

解:(1)如图1:沿AD、CD中点,BC、CD中点剪开,即可得到一个等腰△PMN;

(2)取AB、CD的中点E、F.
∵点D的坐标为(5,8),四边形ABCD是矩形,
∴E(0,4),F(5,4).
①如图2,若PM=PN,则P(2.5,8).
将点P、E的坐标分别代入直线PM的解析式为y=kx+b,得

解得,

②如图3,若PM=MN,则PM=MN=10,所以,EP=5,
∵AE=4,
∴在Rt△APE中,根据勾股定理知AP===3,
∴P(3,8).
将点P、E的坐标分别代入直线PM的解析式为y=kx+b,得

解得,

③如图4,若PN=MN,则PN=MN=10,
所以,PF=5,
∵DF=4,
∴在Rt△PDF中,根据勾股定理知PD===3
∴P(2,8).
将点P、E的坐标分别代入直线PM的解析式为y=kx+b,得

解得,
综上所述,
k=或2;
故答案是:或2.

分析:(1)可直接沿AD、CD中点,BC、CD中点剪开;
(2)△MNP是等腰三角形,分①PM=PN,②PM=MN,③PN=MN三种情况取AB、CD的中点E、F,沿PE、PF剪开,拼接成等腰三角形,然后求出相应的k值.
点评:本题考查了一次函数综合题.解答(2)题时,需要分类讨论,以防漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•丰台区一模)将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为
8
5
4
3
或2
8
5
4
3
或2

查看答案和解析>>

科目:初中数学 来源:2012年江苏省常州市二十四中中考数学模拟试卷(C)(解析版) 题型:解答题

将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为______.

查看答案和解析>>

科目:初中数学 来源:2012年北京市丰台区中考数学一模试卷(解析版) 题型:解答题

将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

将矩形纸片分别沿两条不同的直线剪两刀,使剪得的三块纸片恰能拼成一个三角形(不能有重叠和缝隙).图1中提供了一种剪拼成等腰三角形的示意图.

         

图1                   图2    

     

(1)    请提供另一种剪拼成等腰三角形的方式,并在图2中画出示意图;

     

图3                 备用图 

(2)以点为原点,所在直线为轴建立平面直角坐标系(如图),点的坐标为.若剪拼后得到等腰三角形,使点轴上(上方),点在边上(不与重合).设直线的解析式为),则的值为        的取值范围是         .(不要求写解题过程).

查看答案和解析>>

同步练习册答案