精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(-1,0)、B(3,0)、C(0,3)三点,其顶点为D.(1)求:经过A、B、C三点的抛物线的解析式;
(2)求四边形ABDC的面积;
(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
)

(1)由题意,得
a-b+c=0
9a+3b+c=0
c=3

解之,得
a=-1
b=2
c=3

∴y=-x2+2x+3;

(2)由(1)可知y=-(x-1)2+4,
∴顶点坐标为D(1,4),
设其对称轴与x轴的交点为E,
∵S△AOC=
1
2
|AO|•|OC|,
=
1
2
×1×3,
=
3
2
,(5分)
S梯形OEDC=
1
2
(|DC|+|DE|)×|OE|,
=
1
2
(3+4)×1,
=
7
2

S△DEB=
1
2
|EB|•|DE|,
=
1
2
×2×4,
=4,(7分)
S四边形ABDC=S△AOC+S梯形OEDC+S△DEB
=
3
2
+
7
2
+4,
=9;

(3)△DCB与△AOC相似,(9分)
证明:过点D作y轴的垂线,垂足为F,
∵D(1,4),F(0,4),
∴Rt△DFC中,DC=
2
,且∠DCF=45°,
在Rt△BOC中,∠OCB=45°,BC=3
2

∴∠AOC=∠DCB=90°三角形相似,
DC
AO
=
BC
CO
=
2
1

∴△DCB△AOC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;
(2)以AD为直径的圆经过点C.
①求抛物线的解析式;
②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC内接于半径为4的☉0,过0作BC的垂线,垂足为F,且交☉0于P、Q两点.OD、OE的长分别是抛物线y=x2+2mx+m2-9与x轴的两个交点的横坐标.
(1)求抛物线的解析式;
(2)是否存在直线l,使它经过抛物线与x轴的交点,并且原点到直线l的距离是2?如果存在,请求出直线l的解析式;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,-1)
(1)求经过B、E、C三点的二次函数的解析式;
(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连接PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;
(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线经过点(1,0),(-5,0),且顶点纵坐标为
9
2
,这个二次函数的解析式______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.75x,同时预计年销售量增加的比例为0.6x.
(1)求本年度预计的年利润y与投入成本增加的比例x的关系式;
(2)为使本年度的利润比上一年有所增加,投入成本增加的比例应在什么范围?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=-
1
12
x2+
2
3
x+
5
3
,则该运动员此次掷铅球的成绩是______m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线y=
1
18
x2-
4
9
x-10与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DEOA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒).
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<
9
2
时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

查看答案和解析>>

同步练习册答案