精英家教网 > 初中数学 > 题目详情
6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是(  )
A.8B.6C.4D.2

分析 过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.

解答:过点P作PE⊥BC于E,
∵AB∥CD,PA⊥AB,
∴PD⊥CD,
∵BP和CP分别平分∠ABC和∠DCB,
∴PA=PE,PD=PE,
∴PE=PA=PD,
∵PA+PD=AD=8,
∴PA=PD=4,
∴PE=4.
故选C.

点评 本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.
(1)请求出BC的长度;
(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;
(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.

(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;
(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.
①当点M与点C、D不重合时,连接CM,求∠CMD的度数;
②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.化简求值:$\frac{x}{{x}^{2}-1}$$÷\frac{{x}^{2}+x}{{x}^{2}+2x+1}$-$\frac{{x}^{2}}{x-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,-2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,-x+1},则该函数的最小值是(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列四个立体图形中,它们各自的三视图都相同的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:
(1)a=40,m=1;
(2)乙的速度是80km/h;
(3)甲比乙迟$\frac{7}{4}$h到达B地;
(4)乙车行驶$\frac{9}{4}$小时或$\frac{19}{4}$小时,两车恰好相距50km.
正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为(  )
A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<0

查看答案和解析>>

同步练习册答案