精英家教网 > 初中数学 > 题目详情
观察下列一组等式:
(a+1)(a2-a+1)=a3+1
(a-2)(a2+2a+4)=a3-8
(a+3)(a2-3a+9)=a3+27

(1)以上这些等式中,你有何发现?利用你的发现填空.
①(x-3)(x2+3x+9)=
x3-27
x3-27

②(2x+1)(
4x2-2x+1
4x2-2x+1
)=8x3+1;
③(
x-y
x-y
)(x2+xy+y2)=x3-y3
(2)计算:(a2-b2)(a2+ab+b2)(a2-ab+b2).
分析:(1)根据上述等式归纳总结得到规律,即可得到结果;
(2)将第一个因式利用平方差公式分解,结合后,利用得出的规律计算即可得到结果.
解答:解:(1)①(x-3)(x2+3x+9)=x3-27;
②(2x+1)(4x2-2x+1)=8x3+1;
③(x-y)(x2+xy+y2)=x3-y3
故答案为:①x3-27;②8x3+1;③x3-y3
(2)原式=[(a-b)(a2+ab+b2)][(a+b)(a2-ab+b2)]=(a3-b3)(a3+b3)=a6-b6
点评:此题考查了整式的混合运算,找出其中的规律是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

观察下列一组等式,
5
2
+
5
3
=
5
2
×
5
3
7
3
+
7
4
=
7
3
×
7
4
9
2
+
9
7
=
9
2
×
9
7
…根据等式的特点用在字母表示其规律为

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•安庆二模)观察下列一组等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,….
解答下列问题:
(1)对于任意的正整数n:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

【证】
(2)计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012
=
2011
2012
2011
2012

【解】
(3)已知m为正整数化简:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2m-1)(2m+1)
=
m
2m+1
m
2m+1

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列一组等式,然后解答后面的问题:
(
2
+1)(
2
-1)=1
(
3
+
2
)(
3
-
2
)=1
(
4
+
3
)(
4
-
3
)=1
(
5
+
4
)(
5
-
4
)=1
,…
(1)观察上面的规律,计算下列式子的值.
(
1
2
+1
+
1
3
+
2
+
1
4
+
3
+
…+
1
2012
+
2011
)•(
2012
+1)

(2)利用上面的规律,试比较
11
-
10
12
-
11
的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列一组等式蕴含的规律:
12+3×1+2=2×3,22+3×2+2=3×4,32+3×3+2=4×5,…,
请用含字母n的等式表示上述规律,并证明这个结论.

查看答案和解析>>

同步练习册答案