【题目】如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为ts.
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值.
【答案】答案见解析
【解析】试题分析: (1)直接根据勾股定理求出BC的长度;
(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;
试题解析:
解:(1)在Rt△ABC中,由勾股定理,得BC2=AB2-AC2=52-32=16.
∴BC=4 cm.
(2)由题意,知BP=t cm,
①当∠APB为直角时,如图1,点P与点C重合,BP=BC=4 cm,
∴t=4;
②当∠BAP为直角时,如图2,BP=t cm,CP=(t-4)cm,AC=3 cm,
在Rt△ACP中,AP2=AC2+CP2=32+(t-4)2.
在Rt△BAP中,AB2+AP2=BP2,
即52+[32+(t-4)2]=t2.
解得t=.
∴当△ABP为直角三角形时,t=4或t=.
科目:初中数学 来源: 题型:
【题目】某种水泥储存罐的容量为25m3,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3min后,再打开输出口,匀速向运输车输出水泥,又经过2.5min水泥储存罐注满.已知水泥储存罐内的水泥量y(m3)与时间x(min)之间的函数图象如图所示.
(1)求每分钟向储存罐内注入的水泥量;
(2)当3≤x≤5.5时,求y与x之间的函数关系式;
(3)水泥储存罐每分钟向运输车输出的水泥量是多少立方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC中,分别延长边AB、BC、CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面积为1,则△DEF的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD与ECGF是两个边长分别为a、b的正方形,
(1)用a、b表示△BGF的面积的代数式S1=
(2)当a=4cm、b=6cm时,求△BGF的面积.
(3)求出阴影部分的面积的代数式S2 (用a、b表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1;
(2)写出A1、C1的坐标;
(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1 , 求△A1B1C1旋转过程中扫过的面积(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中,且A(-2,1)、B(-3,-2)、C(1,-4).将其平移后得到△A1B1C1,若A,B的对应点是A1,B1,C的对应点C1的坐标是(3,-1).
(1)在平面直角坐标系中画出△ABC和△A1B1C1;
(2)写出点A1的坐标是_____________,B1坐标是___________;
(3)此次平移可看作△ABC向________,平移了____________个单位长度,再向_______平移了______个单位长度得到△A1B1C1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,过点B作BE∥AC,在BG上取点E,连接DE交AC的延长线于点F.
(1)求证:DF=EF;
(2)如果AD=2,∠ADC=60°,AC⊥DC于点C,AC=2CF,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.
(1)求k的值;
(2)在(1)的条件下,已知线段AB=6cm,点C是直线AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com