精英家教网 > 初中数学 > 题目详情

【题目】已知A=x-2y,B=-x-4y+1.

(1)求2(A+B)-(A-B);(结果用含x,y的代数式表示

(2)当互为相反数时,求(1)中代数式的值.

【答案】(1);(2)原式=0.

【解析】

(1)先化简,把A,B的值代入,即可求出答案;

(2)根据相反数求出x、y的值,再代入求出即可.

解:(1)∵A=x-2y,B=-x-4y+1,

∴2(A+B)-(A-B),

=2A+2B-A+B,

=A+3B,

Ax2yB=-x4y1时,

原式= x2y +3(-x-4y+1),

= x2y -3x-12y+3,

=

(2)∵|x+2 |互为相反数,

∴|x+2 |+=0,

∴x+2=0, =0,

∴x=-2,y=

∴2(A+B)-(A-B)==-2×(-2)-14×+3=0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O处.

(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC:∠MOC=2:1,求∠AOC的度数;

(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB对的角平分线,此时∠AOM∠NOC满足怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】读题画图计算并作答

画线段AB=3 cm,在线段AB上取一点K,使AK=BK,在线段AB的延长线上取一点C,使AC=3BC,在线段BA的延长线取一点D,使AD=AB.

(1)求线段BC、DC的长?

(2)K是哪些线段的中点?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为完善人口发展战略,我国现已全面提倡实施一对夫妇可生育两个孩子的政策.某中学为了解在校生对父母再生“二胎”的同意情况,在校园内随机调查了部分学生对“二胎”的同意情况(把调查的结果分为四个等级:A非常同意;B:同意;C:无所谓;D:坚决反对),并将调查结果绘成了如下两幅不完整的统计图. 请根据统计图中的信息解答下列问题:
(1)本次被抽样调查的学生有多少人?
(2)将两幅统计图补充完整:
(3)若全校共有3600名学生,估计“非常同意“父母再生“二胎”的大约有多少人?
(4)若从3名“同意”父母生“二胎”和2名“坚决反对”父母生“二胎”的学生中随机抽取两名学生,用树状图或列表法求抽取的两个恰好都“坚决反对”父母生“二胎”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为-20,点B表示的数为16.动点P从点A出发,以每秒6个单位长度的速度沿数轴向右匀速运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动.若点P、Q同时出发,设运动时间为t(t>0)秒.

(1)填空:①点A、B之间的距离为

②点P表示的数为 ,Q表示的数为 (用含t的代数式表示);

(2)当点P、Q到原点O的距离相等时,求t的值并求出此时点Q表示的数;

(3)若点P从点A出发到达点B后立刻返回到点A并保持速度不变,点Q到达点A时停止运动,问点P运动多少秒时与点Q相距6个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列变形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=两边同除以,得x=1;

③由方程6x﹣4=x+4移项,得7x=0;

④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).

错误变形的个数是(  )个

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)

(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=   °;

(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;

(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读材料)

平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3.

(解决问题)

(1)求点A(-2.4),B(+-)的勾股值[A],[B];

(2)若点Mx轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC,AB=AC,∠BAC=36°,将△ABC绕点A按逆时针旋转角度ɑ(0°<ɑ<180°)得到△ADE,连接CE、BD,BDCE相交于点F。

(1)求证:BD=CE

(2)ɑ等于多少度时,四边形AFDE是平行四边形?并说明理由。

查看答案和解析>>

同步练习册答案