【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发, 到达目的地后停止,设慢车行驶时间为 x 小时,两车之间的距离为 y 千米,两者的关系如图 所示:
(1)两车出发 小时后相遇;
(2)求快车和慢车的速度;
(3)求线段 BC 所表示的 y 与 x 的 关系式,并求两车相距 300 千米时的时间.
【答案】(1)4.8;(2)150,100;(3)y=250x-1200(4.8≤x≤8),3.6或6
【解析】
(1)根据图象可知两车出发4.8小时相遇;
(2)根据图象和题意可以分别求出慢车和快车的速度;
(3)根据题意可以求得点C的坐标,由图象可以得到点B的坐标,从而可以得到线段BC所表示的y与x之间的函数关系式,再把y=300代入求出对应的y值即可得出两车行驶6小时两车相距多少千米.
解:(1)由图知:两车出发4.8小时相遇;
故答案为:4.8
(2)快车8小时到达,慢车12小时到达,
故:快车速度为1200÷8=150(千米/时),
慢车速度为1200÷12=100(千米/时);
(3)由题可得,点C是快车刚到达乙地,
∵点C的横坐标是8,
∴纵坐标是:100×8=800,
即点C的坐标为(8,800).
设线段BC对应的函数解析式为y=kx+b,
∵点B(4.8,0),点C(8,800),
解得:
∴线段BC所表示的y与x的函数关系式是y=250x-1200(4.8≤x≤8).
当y=300时,300=250x-1200,解得x=6.
设线段AB对应的函数解析式为y1=k1x+b1,
点B(4.8,0),点A(0,1200)
解得:
线段AB所表示的y与x的函数关系式是y1=-250x+1200(0≤x≤4.8);
当y=300时,300=-250x+1200,解得x=3.6.
即两车相距300千米时的时间为3.6或6时.
科目:初中数学 来源: 题型:
【题目】若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.
(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;
(2)找出图中与ΔAGB相似的三角形,并证明;
(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MFMH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年11月11日24时,天猫双11成交额达到2684亿元.同一天,各电商平台上众品牌网上促销如火如荼,纷纷推出多种销售玩法吸引顾客让利消费者.某品牌标价每件100元的商品就推出了如下的优惠促销活动
一次性购物总金额 | 优惠措施 |
少于或等于700元 | 一律打八折 |
超过700元,但不超过900元 | 一律打六折 |
超过900元 | 其中900元部分打五折, 超过900元的部分打三折优惠 |
(1)王教授一次性购买该商品12件,实际付款________元.
(2)李阿姨一次性购买该商品若干件,实际付款480元,请认真思考求出李阿姨购买该商品的件数的所有可能.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,直线 EF 分别交 AB、CD于 点 E、F,EG 平分∠AEF,
(1)求证:△EGF 是等腰三角形.
(2)若∠1=40°,求∠2 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲三角形的周长为,乙三角形的第一条边长为,第二条边长为,第三条边比第二条边短.
(1)求乙三角形第三条边的长;
(2)甲三角形和乙三角形的周长哪个大?试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点F,D,E分别是边AB,BC,AC上的点,且AD,BE,CF相交于点O,若点O是△ABC的重心,则以下结论:①线段AD,BE,CF是△ABC的三条角平分线;②△ABD的面积是△ABC面积的一半;③图中与△ABD面积相等的三角形有5个;④△BOD的面积是△ABD面积的;⑤AO=2OD其中一定正确结论有( )
A.①③④⑤B.②③④⑤C.③④⑤D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,点为所在平面内一点,过点分别作交于点,交于点,交于点.
若点在上(如图①),此时,可得结论:.
请应用上述信息解决下列问题:
当点分别在内(如图②),外(如图③)时,上述结论是否成立?若成立,请给予证明;若不成立,,,,与之间又有怎样的数量关系,请写出你的猜想,不需要证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E,B.
(1)求二次函数y=ax2+bx+c的解析式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com